Skip to content

Commit

Permalink
[misc] use out argument for flash attention (vllm-project#10822)
Browse files Browse the repository at this point in the history
Signed-off-by: youkaichao <youkaichao@gmail.com>
  • Loading branch information
youkaichao authored Dec 2, 2024
1 parent e95f275 commit a4c4daf
Show file tree
Hide file tree
Showing 13 changed files with 144 additions and 157 deletions.
1 change: 1 addition & 0 deletions vllm/attention/backends/abstract.py
Original file line number Diff line number Diff line change
Expand Up @@ -247,5 +247,6 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
raise NotImplementedError
2 changes: 2 additions & 0 deletions vllm/attention/backends/blocksparse_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -360,6 +360,7 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.
Expand Down Expand Up @@ -448,5 +449,6 @@ def forward(
blocksparse_head_sliding_step=self.head_sliding_step,
)

assert output is not None
# Reshape the output tensor.
return output.view(num_tokens, hidden_size)
55 changes: 19 additions & 36 deletions vllm/attention/backends/flash_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -638,24 +638,27 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
query: shape = [num_tokens, num_heads, head_size]
key: shape = [num_tokens, num_kv_heads, head_size]
value: shape = [num_tokens, num_kv_heads, head_size]
output: shape = [num_tokens, num_heads, head_size]
kv_cache = [2, num_blocks, block_size, num_kv_heads, head_size]
NOTE: kv_cache will be an empty tensor with shape [0]
for profiling run.
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
NOTE: It in-place updates the output tensor.
"""
# NOTE(woosuk): FlashAttention does not support FP8 KV cache.
assert k_scale == 1.0 and v_scale == 1.0, (
"key/v_scale is not supported in FlashAttention.")

assert output is not None, "Output tensor must be provided."

if (attn_type == AttentionType.ENCODER
and (not attn_metadata.is_all_encoder_attn_metadata_set)):
raise AttributeError("Encoder attention requires setting "
Expand All @@ -666,23 +669,12 @@ def forward(
"requires setting cross-attention "
"metadata attributes.")

num_heads: int = self.num_heads
head_size: int = self.head_size
num_kv_heads: int = self.num_kv_heads
kv_cache_dtype: str = self.kv_cache_dtype
softmax_scale: float = self.scale
window_size = self.sliding_window
alibi_slopes: Optional[torch.Tensor] = self.alibi_slopes
logits_soft_cap: Optional[float] = self.logits_soft_cap

num_tokens, hidden_size = query.shape

# Reshape the query, key, and value tensors.
query = query.view(-1, num_heads, head_size)
if (key is not None) and (value is not None):
key = key.view(-1, num_kv_heads, head_size)
value = value.view(-1, num_kv_heads, head_size)

if kv_cache.numel() > 0:
key_cache = kv_cache[0]
value_cache = kv_cache[1]
Expand Down Expand Up @@ -721,13 +713,13 @@ def forward(
num_decode_query_tokens) = \
get_num_prefill_decode_query_kv_tokens(attn_metadata, attn_type)
decode_query = query[num_prefill_query_tokens:]
decode_output = output[num_prefill_query_tokens:]
# QKV for prefill.
query = query[:num_prefill_query_tokens]
prefill_output = output[:num_prefill_query_tokens]
assert query.shape[0] == num_prefill_query_tokens
assert decode_query.shape[0] == num_decode_query_tokens

prefill_output: Optional[torch.Tensor] = None
decode_output: Optional[torch.Tensor] = None
if prefill_meta := attn_metadata.prefill_metadata:
# Prompt run.
if (kv_cache.numel() == 0 or prefill_meta.block_tables is None
Expand All @@ -741,7 +733,7 @@ def forward(
key = key[:num_prefill_kv_tokens]
value = value[:num_prefill_kv_tokens]

prefill_output = flash_attn_varlen_func(
flash_attn_varlen_func(
q=query,
k=key,
v=value,
Expand All @@ -754,14 +746,15 @@ def forward(
window_size=window_size,
alibi_slopes=alibi_slopes,
softcap=logits_soft_cap,
out=prefill_output,
)
else:
# prefix-enabled attention
assert attn_type == AttentionType.DECODER, (
"Only decoder-only models support prefix caching")
assert prefill_meta.seq_lens is not None
max_seq_len = max(prefill_meta.seq_lens)
prefill_output = flash_attn_varlen_func( # noqa
flash_attn_varlen_func( # noqa
q=query,
k=key_cache,
v=value_cache,
Expand All @@ -775,6 +768,7 @@ def forward(
alibi_slopes=alibi_slopes,
block_table=prefill_meta.block_tables,
softcap=logits_soft_cap,
out=prefill_output,
)

if decode_meta := attn_metadata.decode_metadata:
Expand All @@ -788,7 +782,7 @@ def forward(
assert attn_type == AttentionType.DECODER, (
"Only decoder-only models support max_decode_query_len > 1"
)
decode_output = flash_attn_varlen_func(
flash_attn_varlen_func(
q=decode_query,
k=key_cache,
v=value_cache,
Expand All @@ -802,6 +796,7 @@ def forward(
alibi_slopes=alibi_slopes,
softcap=logits_soft_cap,
block_table=decode_meta.block_tables,
out=decode_output,
)
else:
# Use flash_attn_with_kvcache for normal decoding.
Expand All @@ -810,7 +805,7 @@ def forward(
_,
block_tables_arg,
) = get_seq_len_block_table_args(decode_meta, False, attn_type)
decode_output = flash_attn_with_kvcache(
flash_attn_with_kvcache(
q=decode_query.unsqueeze(1),
k_cache=key_cache,
v_cache=value_cache,
Expand All @@ -821,20 +816,8 @@ def forward(
window_size=window_size,
alibi_slopes=alibi_slopes,
softcap=logits_soft_cap,
).squeeze(1)

if prefill_output is None:
assert decode_output is not None
return decode_output.view(num_decode_query_tokens, hidden_size)
if decode_output is None:
assert prefill_output is not None
return prefill_output.view(num_prefill_query_tokens, hidden_size)

assert decode_meta is not None
decode_output = decode_output.squeeze(1)
output = torch.cat([prefill_output, decode_output], dim=0)
return output.view(num_tokens, hidden_size)

out=decode_output.unsqueeze(1),
)
return output


Expand Down
4 changes: 4 additions & 0 deletions vllm/attention/backends/flashinfer.py
Original file line number Diff line number Diff line change
Expand Up @@ -774,7 +774,11 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:

# TODO: directly write to output tensor

if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
Expand Down
1 change: 1 addition & 0 deletions vllm/attention/backends/hpu_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,7 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with xFormers and PagedAttention.
Expand Down
1 change: 1 addition & 0 deletions vllm/attention/backends/ipex_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,6 +173,7 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with IPEX varlen_attention and PagedAttention.
Expand Down
1 change: 1 addition & 0 deletions vllm/attention/backends/pallas.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,7 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with Pallas attention.
Expand Down
1 change: 1 addition & 0 deletions vllm/attention/backends/rocm_flash_attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -415,6 +415,7 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with FlashAttention and PagedAttention.
Expand Down
1 change: 1 addition & 0 deletions vllm/attention/backends/torch_sdpa.py
Original file line number Diff line number Diff line change
Expand Up @@ -431,6 +431,7 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with torch SDPA and PagedAttention.
Expand Down
1 change: 1 addition & 0 deletions vllm/attention/backends/xformers.py
Original file line number Diff line number Diff line change
Expand Up @@ -417,6 +417,7 @@ def forward(
k_scale: float = 1.0,
v_scale: float = 1.0,
attn_type: str = AttentionType.DECODER,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with xFormers and PagedAttention.
Expand Down
76 changes: 72 additions & 4 deletions vllm/attention/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,15 +4,14 @@
import torch
import torch.nn as nn

import vllm.envs as envs
from vllm.attention import AttentionMetadata, AttentionType
from vllm.attention.selector import backend_name_to_enum, get_attn_backend
from vllm.config import CacheConfig, get_current_vllm_config
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.platforms import current_platform
from vllm.platforms import _Backend, current_platform
from vllm.utils import direct_register_custom_op


Expand Down Expand Up @@ -97,14 +96,23 @@ def __init__(
self.impl = impl_cls(num_heads, head_size, scale, num_kv_heads,
alibi_slopes, sliding_window, kv_cache_dtype,
blocksparse_params, logits_soft_cap)
self.num_heads = num_heads
self.head_size = head_size
self.num_kv_heads = num_kv_heads
self.backend = backend_name_to_enum(attn_backend.get_name())

# For cuda-alike (CUDA and ROCM) and cpu platforms, we control how
# torch.compile works by registering the attention as one giant
# opaque custom op. For other platforms, we directly call them
# and let torch.compile handle them.
self.use_direct_call = envs.VLLM_USE_V1 or not (
current_platform.is_cuda_alike() or current_platform.is_cpu())
self.use_direct_call = not current_platform.is_cuda_alike(
) and not current_platform.is_cpu()

# For some attention backends, we allocate an output tensor before
# calling the custom op. When piecewise cudagraph is enabled, this
# makes sure the output tensor is allocated inside the cudagraph.
self.use_output = self.backend == _Backend.FLASH_ATTN or \
self.backend == _Backend.FLASH_ATTN_VLLM_V1
compilation_config = get_current_vllm_config().compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError(f"Duplicate layer name: {prefix}")
Expand All @@ -130,6 +138,22 @@ def forward(
self._k_scale,
self._v_scale,
attn_type=attn_type)
elif self.use_output:
output = torch.empty_like(query)
hidden_size = query.size(-1)
# Reshape the query, key, and value tensors.
# NOTE(woosuk): We do this outside the custom op to minimize the
# CPU overheads from the non-CUDA-graph regions.
query = query.view(-1, self.num_heads, self.head_size)
output = output.view(-1, self.num_heads, self.head_size)
if key is not None:
key = key.view(-1, self.num_kv_heads, self.head_size)
if value is not None:
value = value.view(-1, self.num_kv_heads, self.head_size)
torch.ops.vllm.unified_attention_with_output(
query, key, value, output, kv_cache, attn_type,
self.layer_name)
return output.view(-1, hidden_size)
else:
return torch.ops.vllm.unified_attention(query, key, value,
kv_cache, attn_type,
Expand Down Expand Up @@ -183,3 +207,47 @@ def unified_attention_fake(
fake_impl=unified_attention_fake,
dispatch_key=current_platform.dispatch_key,
)


def unified_attention_with_output(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
output: torch.Tensor,
kv_cache: torch.Tensor,
attn_type: str,
layer_name: str,
) -> None:
forward_context: ForwardContext = get_forward_context()
attn_metadata = forward_context.dynamic_forward_context
self = forward_context.static_forward_context[layer_name]
self.impl.forward(query,
key,
value,
kv_cache,
attn_metadata,
self._k_scale,
self._v_scale,
attn_type=attn_type,
output=output)


def unified_attention_with_output_fake(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
output: torch.Tensor,
kv_cache: torch.Tensor,
attn_type: str,
layer_name: str,
) -> None:
return


direct_register_custom_op(
op_name="unified_attention_with_output",
op_func=unified_attention_with_output,
mutates_args=["kv_cache", "output"],
fake_impl=unified_attention_with_output_fake,
dispatch_key=current_platform.dispatch_key,
)
2 changes: 1 addition & 1 deletion vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -2238,7 +2238,7 @@ class CompilationConfig(BaseModel):
custom_ops: List[str] = Field(default_factory=list)
splitting_ops: List[str] = Field(default_factory=lambda: [
"vllm.unified_attention",
"vllm.unified_v1_flash_attention",
"vllm.unified_attention_with_output",
])

use_inductor: bool = True
Expand Down
Loading

0 comments on commit a4c4daf

Please sign in to comment.