From e1a892477e0df0dee4c65ca63f2a3682498b656b Mon Sep 17 00:00:00 2001 From: github-action-benchmark Date: Thu, 22 Aug 2024 03:08:49 +0000 Subject: [PATCH] add smaller_is_better (customSmallerIsBetter) benchmark result for d2ecadd10af5f341a15d275a27a6eb015b7ccf6c --- dev/bench/data.js | 82 ++++++++++++++++++++--------------------------- 1 file changed, 35 insertions(+), 47 deletions(-) diff --git a/dev/bench/data.js b/dev/bench/data.js index 39df130..56d9e3a 100644 --- a/dev/bench/data.js +++ b/dev/bench/data.js @@ -1,54 +1,8 @@ window.BENCHMARK_DATA = { - "lastUpdate": 1724293329222, + "lastUpdate": 1724296129649, "repoUrl": "https://github.com/neuralmagic/nm-vllm-ent", "entries": { "smaller_is_better": [ - { - "commit": { - "author": { - "name": "dhuangnm", - "username": "dhuangnm", - "email": "74931910+dhuangnm@users.noreply.github.com" - }, - "committer": { - "name": "GitHub", - "username": "web-flow", - "email": "noreply@github.com" - }, - "id": "57e0c324a416a8edbbe0b701caad744adbd2f690", - "message": "Enable distributed tests to run on duo instance (#41)\n\nSUMMARY:\r\n\r\n- allow test_skip_env_vars files to skip tests based on gpus (solo, duo\r\netc) the tests run on\r\n- enabled distributed tests to run on l4-duo\r\n- cleaned up unused input argument etc\r\n\r\nTEST PLAN:\r\nAll tests\r\n\r\nThe duo run finished successful:\r\nhttps://github.com/neuralmagic/nm-vllm-ent/actions/runs/10166663436/job/28118670643,\r\nhowever the solo ones hit timeout, still investigating.\r\n\r\n---------\r\n\r\nCo-authored-by: dhuangnm \r\nCo-authored-by: dhuangnm ", - "timestamp": "2024-07-31T23:57:58Z", - "url": "https://github.com/neuralmagic/nm-vllm-ent/commit/57e0c324a416a8edbbe0b701caad744adbd2f690" - }, - "date": 1722738187545, - "tool": "customSmallerIsBetter", - "benches": [ - { - "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA L4 x 1\", \"vllm_version\": \"0.5.2.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.0+cu121\"}", - "value": 24.86347744668213, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.2.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA L4', major=8, minor=9, total_memory=22478MB, multi_processor_count=58)]\",\n \"cuda_device_names\": [\n \"NVIDIA L4\"\n ]\n },\n \"gpu_description\": \"NVIDIA L4 x 1\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"facebook/opt-350m\",\n \"tokenizer\": \"facebook/opt-350m\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 1,\n \"server_args\": \"{'model': 'facebook/opt-350m', 'tokenizer': 'facebook/opt-350m', 'max-model-len': 2048, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-08-04 02:12:59 UTC\",\n \"model\": \"facebook/opt-350m\",\n \"dataset\": \"sharegpt\"\n}" - }, - { - "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA L4 x 1\", \"vllm_version\": \"0.5.2.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.0+cu121\"}", - "value": 6.411308427369934, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.2.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA L4', major=8, minor=9, total_memory=22478MB, multi_processor_count=58)]\",\n \"cuda_device_names\": [\n \"NVIDIA L4\"\n ]\n },\n \"gpu_description\": \"NVIDIA L4 x 1\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"facebook/opt-350m\",\n \"tokenizer\": \"facebook/opt-350m\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 1,\n \"server_args\": \"{'model': 'facebook/opt-350m', 'tokenizer': 'facebook/opt-350m', 'max-model-len': 2048, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-08-04 02:12:59 UTC\",\n \"model\": \"facebook/opt-350m\",\n \"dataset\": \"sharegpt\"\n}" - }, - { - "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA L4 x 1\", \"vllm_version\": \"0.5.2.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.0+cu121\"}", - "value": 183.04559386002134, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.2.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA L4', major=8, minor=9, total_memory=22478MB, multi_processor_count=58)]\",\n \"cuda_device_names\": [\n \"NVIDIA L4\"\n ]\n },\n \"gpu_description\": \"NVIDIA L4 x 1\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 1,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-08-04 02:21:56 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" - }, - { - "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA L4 x 1\", \"vllm_version\": \"0.5.2.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.0+cu121\"}", - "value": 85.75310927725049, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.2.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA L4', major=8, minor=9, total_memory=22478MB, multi_processor_count=58)]\",\n \"cuda_device_names\": [\n \"NVIDIA L4\"\n ]\n },\n \"gpu_description\": \"NVIDIA L4 x 1\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 1,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-08-04 02:21:56 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" - } - ] - }, { "commit": { "author": { @@ -2242,6 +2196,40 @@ window.BENCHMARK_DATA = { "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.3.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 1\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 1,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-08-22 02:20:54 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" } ] + }, + { + "commit": { + "author": { + "name": "Derek Kozikowski", + "username": "derekk-nm", + "email": "106621615+derekk-nm@users.noreply.github.com" + }, + "committer": { + "name": "GitHub", + "username": "web-flow", + "email": "noreply@github.com" + }, + "id": "d2ecadd10af5f341a15d275a27a6eb015b7ccf6c", + "message": "add support for the lm-eval task \"ifeval\" (#53)\n\n# SUMMARY:\r\n\r\nUpdates test_lm_eval_correctness to handle reporting of results for all\r\ntasks and their metrics as requested by the model configuration file.\r\nIncorporates the \"ifeval\" task with one model configured as an example.\r\nThe \"ifeval\" task has some package dependencies added to\r\nrequirements-test.txt. Includes a README.md describing the layout of the\r\nmodel configuration files.\r\n\r\nA followup PR will include `ifeval` ground truth values for the\r\nremaining models we are currently using.\r\n\r\n# TEST PLAN:\r\nI tested this locally with a simple `TinyLlama.yaml` file for the\r\nTinyLlama model. in there I configured the `ifeval` task with a\r\ndifferent `rtol`, and then modified the .yaml config file to only\r\nrequest the `gsm8k` task to demonstrate that the code will work with\r\nother models:\r\n\r\n## run results for config with two tasks\r\n\r\n| task | metric | ground_truth | measured | rtol | isclose |\r\n\r\n|:-------|:-----------------------------|---------------:|-----------:|-------:|:----------|\r\n| gsm8k | exact_match,strict-match | 0.023 | 0.023 | 0.025 | True |\r\n| gsm8k | exact_match,flexible-extract | 0.029 | 0.029 | 0.025 | True |\r\n| ifeval | prompt_level_strict_acc,none | 0.036 | 0.0351201 | 0.05 |\r\nTrue |\r\n| ifeval | inst_level_strict_acc,none | 0.078 | 0.0767386 | 0.05 | True\r\n|\r\n| ifeval | prompt_level_loose_acc,none | 0.042 | 0.0425139 | 0.05 | True\r\n|\r\n| ifeval | inst_level_loose_acc,none | 0.099 | 0.0839329 | 0.05 | False\r\n|\r\n\r\n## run results for config with one task\r\n\r\n| task | metric | ground_truth | measured | rtol | isclose |\r\n\r\n|:-------|:-----------------------------|---------------:|-----------:|-------:|:----------|\r\n| gsm8k | exact_match,strict-match | 0.023 | 0.023 | 0.025 | True |\r\n| gsm8k | exact_match,flexible-extract | 0.029 | 0.029 | 0.025 | True |", + "timestamp": "2024-08-19T18:50:34Z", + "url": "https://github.com/neuralmagic/nm-vllm-ent/commit/d2ecadd10af5f341a15d275a27a6eb015b7ccf6c" + }, + "date": 1724296129204, + "tool": "customSmallerIsBetter", + "benches": [ + { + "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.5.3.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", + "value": 76.14679149972896, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.3.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-08-22 03:07:30 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" + }, + { + "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.5.3.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", + "value": 24.669795447726173, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.3.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-08-22 03:07:30 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" + } + ] } ] }