From b76c793526731afa864f0cac6bb185cf5a4034c3 Mon Sep 17 00:00:00 2001 From: github-action-benchmark Date: Sun, 8 Dec 2024 13:27:31 +0000 Subject: [PATCH] add smaller_is_better (customSmallerIsBetter) benchmark result for 74db5c016b3a469ef791dc7ece93d8263a69b549 --- dev/bench/data.js | 94 +++++++++++++++++++++++------------------------ 1 file changed, 47 insertions(+), 47 deletions(-) diff --git a/dev/bench/data.js b/dev/bench/data.js index 054ed00..b48e76e 100644 --- a/dev/bench/data.js +++ b/dev/bench/data.js @@ -1,54 +1,8 @@ window.BENCHMARK_DATA = { - "lastUpdate": 1733629041243, + "lastUpdate": 1733664451710, "repoUrl": "https://github.com/neuralmagic/nm-vllm-ent", "entries": { "smaller_is_better": [ - { - "commit": { - "author": { - "name": "dhuangnm", - "username": "dhuangnm", - "email": "74931910+dhuangnm@users.noreply.github.com" - }, - "committer": { - "name": "GitHub", - "username": "web-flow", - "email": "noreply@github.com" - }, - "id": "9a094e47579bbd9f536bd71d3b418621448c2183", - "message": "add weight_loading tests to nightly (#154)\n\nAdd weight loading tests to nightly.\r\n\r\nCo-authored-by: dhuangnm ", - "timestamp": "2024-11-27T16:18:20Z", - "url": "https://github.com/neuralmagic/nm-vllm-ent/commit/9a094e47579bbd9f536bd71d3b418621448c2183" - }, - "date": 1732764693593, - "tool": "customSmallerIsBetter", - "benches": [ - { - "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\", \"vllm_version\": \"0.6.3.0.20241128\", \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\", \"torch_version\": \"2.4.0+cu121\"}", - "value": 163.113698316738, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.6.3.0.20241128\",\n \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\",\n \"torch_version\": \"2.4.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-11-28 03:23:41 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" - }, - { - "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\", \"vllm_version\": \"0.6.3.0.20241128\", \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\", \"torch_version\": \"2.4.0+cu121\"}", - "value": 38.84614707100709, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.6.3.0.20241128\",\n \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\",\n \"torch_version\": \"2.4.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-11-28 03:23:41 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" - }, - { - "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\", \"vllm_version\": \"0.6.3.0.20241128\", \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\", \"torch_version\": \"2.4.0+cu121\"}", - "value": 277.9365189280361, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.6.3.0.20241128\",\n \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\",\n \"torch_version\": \"2.4.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"tokenizer\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'tokenizer': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-11-28 03:30:10 UTC\",\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"dataset\": \"sharegpt\"\n}" - }, - { - "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\", \"vllm_version\": \"0.6.3.0.20241128\", \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\", \"torch_version\": \"2.4.0+cu121\"}", - "value": 19.72132730645375, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.6.3.0.20241128\",\n \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\",\n \"torch_version\": \"2.4.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"tokenizer\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'tokenizer': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-11-28 03:30:10 UTC\",\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"dataset\": \"sharegpt\"\n}" - } - ] - }, { "commit": { "author": { @@ -2302,6 +2256,52 @@ window.BENCHMARK_DATA = { "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.6.3.0.20241208\",\n \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\",\n \"torch_version\": \"2.4.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-12-08 03:29:30 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" } ] + }, + { + "commit": { + "author": { + "name": "Andy Linfoot", + "username": "andy-neuma", + "email": "78757007+andy-neuma@users.noreply.github.com" + }, + "committer": { + "name": "GitHub", + "username": "web-flow", + "email": "noreply@github.com" + }, + "id": "74db5c016b3a469ef791dc7ece93d8263a69b549", + "message": "remove code coverage from workflows (#157)\n\nSUMMARY:\r\n* remove code coverage options from workflows\r\n* update test invoke script to remove code coverage parameter\r\n\r\nNOTES: given the time it takes to generate code coverage reports, we\r\nshould make these optional via dedicated workflows. we can do that on a\r\nlater PR though. this PR just unplugs the code coverage from our primary\r\nworkflows, but leaves the reporting machinery intact.\r\n\r\nTEST PLAN:\r\nruns on remote push\r\n\r\nCo-authored-by: andy-neuma ", + "timestamp": "2024-12-06T13:12:49Z", + "url": "https://github.com/neuralmagic/nm-vllm-ent/commit/74db5c016b3a469ef791dc7ece93d8263a69b549" + }, + "date": 1733664450257, + "tool": "customSmallerIsBetter", + "benches": [ + { + "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.6.3.0.20241208\", \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 745.5653577189272, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.6.3.0.20241208\",\n \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\",\n \"torch_version\": \"2.4.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"tokenizer\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'tokenizer': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-12-08 13:26:04 UTC\",\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"dataset\": \"sharegpt\"\n}" + }, + { + "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.6.3.0.20241208\", \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 42.886745010333016, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.6.3.0.20241208\",\n \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\",\n \"torch_version\": \"2.4.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"tokenizer\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'tokenizer': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-12-08 13:26:04 UTC\",\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"dataset\": \"sharegpt\"\n}" + }, + { + "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.6.3.0.20241208\", \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 135.98484766514352, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.6.3.0.20241208\",\n \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\",\n \"torch_version\": \"2.4.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-12-08 13:05:37 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" + }, + { + "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.6.3.0.20241208\", \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 24.84726669089839, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.6.3.0.20241208\",\n \"python_version\": \"3.10.12 (main, Sep 30 2024, 21:31:31) [GCC 11.4.0]\",\n \"torch_version\": \"2.4.0+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-12-08 13:05:37 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" + } + ] } ] }