diff --git a/dev/bench/data.js b/dev/bench/data.js index ab52d82..814bd12 100644 --- a/dev/bench/data.js +++ b/dev/bench/data.js @@ -1,54 +1,8 @@ window.BENCHMARK_DATA = { - "lastUpdate": 1727233879196, + "lastUpdate": 1727242386838, "repoUrl": "https://github.com/neuralmagic/nm-vllm-ent", "entries": { "smaller_is_better": [ - { - "commit": { - "author": { - "name": "Derek Kozikowski", - "username": "derekk-nm", - "email": "106621615+derekk-nm@users.noreply.github.com" - }, - "committer": { - "name": "GitHub", - "username": "web-flow", - "email": "noreply@github.com" - }, - "id": "75459fec6c533165eaad8fc8f028d614e46629d6", - "message": "fix use of code_coverage indicator (#73)\n\n# SUMMARY:\r\nTEST jobs on Nightly runs are failing when code_coverage is false (e.g.\r\n[NIGHTLY / TEST (3.10.12, gcp-k8s-l4-duo,\r\nneuralmagic/tests/test_skip_env_vars/duo-quad-full.txt) / TEST (3.10.12,\r\ngcp-k8s-l4-duo)](https://github.com/neuralmagic/nm-vllm-ent/actions/runs/10822514793/job/30048898792#logs)).\r\nnm-nightly.yml was always passing \"true\" to nn-build-test, and\r\nnm-test.yml was not passing the code_coverage to nm-test-whl, so it\r\nwould never generate the cc-vllm.json output.\r\n\r\nTEST PLAN:\r\nI triggered a NIGHTLY against this branch. Need to watch for the result.", - "timestamp": "2024-09-13T16:08:29Z", - "url": "https://github.com/neuralmagic/nm-vllm-ent/commit/75459fec6c533165eaad8fc8f028d614e46629d6" - }, - "date": 1726366334432, - "tool": "customSmallerIsBetter", - "benches": [ - { - "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\", \"vllm_version\": \"0.5.4.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", - "value": 114.8335684358608, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.4.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-09-15 02:04:40 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" - }, - { - "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\", \"vllm_version\": \"0.5.4.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", - "value": 38.039272015865116, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.4.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-09-15 02:04:40 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" - }, - { - "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\", \"vllm_version\": \"0.5.4.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", - "value": 151.8183918836682, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.4.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"tokenizer\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'tokenizer': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-09-15 02:10:51 UTC\",\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"dataset\": \"sharegpt\"\n}" - }, - { - "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\", \"vllm_version\": \"0.5.4.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", - "value": 21.772553239070234, - "unit": "ms", - "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.4.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108), _CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\",\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"tokenizer\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'tokenizer': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-09-15 02:10:51 UTC\",\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"dataset\": \"sharegpt\"\n}" - } - ] - }, { "commit": { "author": { @@ -2302,6 +2256,52 @@ window.BENCHMARK_DATA = { "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.4.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\",\n \"cuda_device_names\": [\n \"NVIDIA A100-SXM4-80GB\"\n ]\n },\n \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 1,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-09-25 03:10:04 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" } ] + }, + { + "commit": { + "author": { + "name": "Andy Linfoot", + "username": "andy-neuma", + "email": "78757007+andy-neuma@users.noreply.github.com" + }, + "committer": { + "name": "GitHub", + "username": "web-flow", + "email": "noreply@github.com" + }, + "id": "d31523d6c981fea0dc356a394ba30de57318fa95", + "message": "have \"install whl action\" return whl info (#78)\n\nSUMMARY:\r\n* have the \"install whl action\" return whl info about vllm and\r\nmagic_wand\r\n* update \"nm test\" to use the new values in the workflow summary\r\n\r\nTEST PLAN:\r\nruns on remote push\r\n\r\nCo-authored-by: andy-neuma ", + "timestamp": "2024-09-24T18:27:57Z", + "url": "https://github.com/neuralmagic/nm-vllm-ent/commit/d31523d6c981fea0dc356a394ba30de57318fa95" + }, + "date": 1727242386202, + "tool": "customSmallerIsBetter", + "benches": [ + { + "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.5.4.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", + "value": 217.40259469641992, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.4.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"tokenizer\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'tokenizer': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-09-25 05:31:47 UTC\",\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"dataset\": \"sharegpt\"\n}" + }, + { + "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.5.4.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", + "value": 18.05300607245218, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.4.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"tokenizer\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'tokenizer': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-09-25 05:31:47 UTC\",\n \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\",\n \"dataset\": \"sharegpt\"\n}" + }, + { + "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.5.4.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", + "value": 71.46984068521608, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.4.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-09-25 05:11:15 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" + }, + { + "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"vllm_version\": \"0.5.4.0\", \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\", \"torch_version\": \"2.3.1+cu121\"}", + "value": 24.140595846018595, + "unit": "ms", + "extra": "{\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"benchmarking_context\": {\n \"vllm_version\": \"0.5.4.0\",\n \"python_version\": \"3.10.12 (main, Jun 7 2023, 13:43:11) [GCC 11.3.0]\",\n \"torch_version\": \"2.3.1+cu121\",\n \"torch_cuda_version\": \"12.1\",\n \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=81116MB, multi_processor_count=132)]\",\n \"cuda_device_names\": [\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\",\n \"NVIDIA H100 80GB HBM3\"\n ]\n },\n \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\",\n \"script_name\": \"benchmark_serving.py\",\n \"script_args\": {\n \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\",\n \"backend\": \"vllm\",\n \"version\": \"N/A\",\n \"base_url\": null,\n \"host\": \"127.0.0.1\",\n \"port\": 9000,\n \"endpoint\": \"/generate\",\n \"dataset\": \"sharegpt\",\n \"num_input_tokens\": null,\n \"num_output_tokens\": null,\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"best_of\": 1,\n \"use_beam_search\": false,\n \"log_model_io\": false,\n \"seed\": 0,\n \"trust_remote_code\": false,\n \"disable_tqdm\": false,\n \"save_directory\": \"benchmark-results\",\n \"num_prompts_\": null,\n \"request_rate_\": null,\n \"nr_qps_pair_\": [\n 300,\n \"1.0\"\n ],\n \"server_tensor_parallel_size\": 4,\n \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"\n },\n \"date\": \"2024-09-25 05:11:15 UTC\",\n \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\",\n \"dataset\": \"sharegpt\"\n}" + } + ] } ] }