From 893cfcf6efb069593b2ebdde198e16f32949dd5f Mon Sep 17 00:00:00 2001 From: github-action-benchmark Date: Sat, 11 Jan 2025 02:17:36 +0000 Subject: [PATCH] add smaller_is_better (customSmallerIsBetter) benchmark result for 4e51ab3e0aac991d2ded2bb55fd5a957e8b1477a --- dev/bench/data.js | 94 +++++++++++++++++++++++------------------------ 1 file changed, 47 insertions(+), 47 deletions(-) diff --git a/dev/bench/data.js b/dev/bench/data.js index cd70d95..33d761c 100644 --- a/dev/bench/data.js +++ b/dev/bench/data.js @@ -1,54 +1,8 @@ window.BENCHMARK_DATA = { - "lastUpdate": 1736489482732, + "lastUpdate": 1736561856832, "repoUrl": "https://github.com/neuralmagic/nm-vllm-ent", "entries": { "smaller_is_better": [ - { - "commit": { - "author": { - "name": "dhuangnm", - "username": "dhuangnm", - "email": "74931910+dhuangnm@users.noreply.github.com" - }, - "committer": { - "name": "GitHub", - "username": "web-flow", - "email": "noreply@github.com" - }, - "id": "b5d97744548e7e7e155d3625edaa2927864c62e5", - "message": "limit flashinfer version to <0.2.0 (#173)\n\nCo-authored-by: dhuangnm ", - "timestamp": "2024-12-24T02:49:56Z", - "url": "https://github.com/neuralmagic/nm-vllm-ent/commit/b5d97744548e7e7e155d3625edaa2927864c62e5" - }, - "date": 1735610357575, - "tool": "customSmallerIsBetter", - "benches": [ - { - "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", - "value": 40.45451215157906, - "unit": "ms", - "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20241231\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\", \"cuda_device_names\": [\"NVIDIA A100-SXM4-80GB\"]}, \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"facebook/opt-350m\", \"tokenizer\": \"facebook/opt-350m\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'facebook/opt-350m', 'tokenizer': 'facebook/opt-350m', 'max-model-len': 2048, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2024-12-31 01:51:33 UTC\", \"model\": \"facebook/opt-350m\", \"dataset\": \"sharegpt\"}" - }, - { - "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", - "value": 4.770104495913549, - "unit": "ms", - "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20241231\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\", \"cuda_device_names\": [\"NVIDIA A100-SXM4-80GB\"]}, \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"facebook/opt-350m\", \"tokenizer\": \"facebook/opt-350m\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'facebook/opt-350m', 'tokenizer': 'facebook/opt-350m', 'max-model-len': 2048, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2024-12-31 01:51:33 UTC\", \"model\": \"facebook/opt-350m\", \"dataset\": \"sharegpt\"}" - }, - { - "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", - "value": 64.7354001676043, - "unit": "ms", - "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20241231\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\", \"cuda_device_names\": [\"NVIDIA A100-SXM4-80GB\"]}, \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2024-12-31 01:57:56 UTC\", \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"dataset\": \"sharegpt\"}" - }, - { - "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", - "value": 14.584673296004562, - "unit": "ms", - "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20241231\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\", \"cuda_device_names\": [\"NVIDIA A100-SXM4-80GB\"]}, \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2024-12-31 01:57:56 UTC\", \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"dataset\": \"sharegpt\"}" - } - ] - }, { "commit": { "author": { @@ -2302,6 +2256,52 @@ window.BENCHMARK_DATA = { "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20250110\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\", \"cuda_device_names\": [\"NVIDIA H100 80GB HBM3\", \"NVIDIA H100 80GB HBM3\", \"NVIDIA H100 80GB HBM3\", \"NVIDIA H100 80GB HBM3\"]}, \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - mistralai/Mixtral-8x7B-Instruct-v0.1\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\", \"tokenizer\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 4, \"server_args\": \"{'model': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'tokenizer': 'mistralai/Mixtral-8x7B-Instruct-v0.1', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"}, \"date\": \"2025-01-10 06:09:56 UTC\", \"model\": \"mistralai/Mixtral-8x7B-Instruct-v0.1\", \"dataset\": \"sharegpt\"}" } ] + }, + { + "commit": { + "author": { + "name": "Domenic Barbuzzi", + "username": "dbarbuzzi", + "email": "domenic@neuralmagic.com" + }, + "committer": { + "name": "GitHub", + "username": "web-flow", + "email": "noreply@github.com" + }, + "id": "4e51ab3e0aac991d2ded2bb55fd5a957e8b1477a", + "message": "Use pytest-nm-releng plugin for reporting (#176)\n\nThis PR updates the command-running action/scripts to use the\n[`pytest-nm-releng`](https://github.com/neuralmagic/pytest-nm-releng)\npytest plugin for the creation of JUnit reports and code coverage\nreports (when enabled).\n\nThe previous method had the command runner script checking if the\ncommand being run was a `pytest` command and, if so, it would append the\nappropriate CLI flags based on what was enabled.\n\nThis was problematic if tests were being executed indirectly; namely, if\nthe command runner script was running something like a Bash script which\nin turn ran the pytest commands. This prevented the command runner from\nbeing able to append the CLI flags to create uniquely named report files\nand, as a result, those tests would not have results captured and\nreported outside the action/job.\n\nWith the new plugin, the new method does away with that and simply sets\n2-3 env vars before running the commands (based on what features are\nenabled) and lets the pytest plugin do the heavy lifting of generating\nunique JUnit report names without needing to append any CLI flags to any\ncommands.", + "timestamp": "2025-01-09T16:54:04Z", + "url": "https://github.com/neuralmagic/nm-vllm-ent/commit/4e51ab3e0aac991d2ded2bb55fd5a957e8b1477a" + }, + "date": 1736561855344, + "tool": "customSmallerIsBetter", + "benches": [ + { + "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 85.60462472960353, + "unit": "ms", + "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20250111\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\", \"cuda_device_names\": [\"NVIDIA H100 80GB HBM3\"]}, \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"facebook/opt-350m\", \"tokenizer\": \"facebook/opt-350m\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'facebook/opt-350m', 'tokenizer': 'facebook/opt-350m', 'max-model-len': 2048, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2025-01-11 02:07:45 UTC\", \"model\": \"facebook/opt-350m\", \"dataset\": \"sharegpt\"}" + }, + { + "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 10.028502177467342, + "unit": "ms", + "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20250111\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\", \"cuda_device_names\": [\"NVIDIA H100 80GB HBM3\"]}, \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"facebook/opt-350m\", \"tokenizer\": \"facebook/opt-350m\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'facebook/opt-350m', 'tokenizer': 'facebook/opt-350m', 'max-model-len': 2048, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2025-01-11 02:07:45 UTC\", \"model\": \"facebook/opt-350m\", \"dataset\": \"sharegpt\"}" + }, + { + "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 58.73696238733828, + "unit": "ms", + "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20250111\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\", \"cuda_device_names\": [\"NVIDIA H100 80GB HBM3\"]}, \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2025-01-11 02:16:18 UTC\", \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"dataset\": \"sharegpt\"}" + }, + { + "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 10.89184261628725, + "unit": "ms", + "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20250111\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\", \"cuda_device_names\": [\"NVIDIA H100 80GB HBM3\"]}, \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2025-01-11 02:16:18 UTC\", \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"dataset\": \"sharegpt\"}" + } + ] } ] }