diff --git a/dev/bench/data.js b/dev/bench/data.js index 89cf306..2a55d1a 100644 --- a/dev/bench/data.js +++ b/dev/bench/data.js @@ -1,5 +1,5 @@ window.BENCHMARK_DATA = { - "lastUpdate": 1734255431209, + "lastUpdate": 1734314427851, "repoUrl": "https://github.com/neuralmagic/nm-vllm-ent", "entries": { "smaller_is_better": [ @@ -830,6 +830,52 @@ window.BENCHMARK_DATA = { "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20241215\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132), _CudaDeviceProperties(name='NVIDIA H100 80GB HBM3', major=9, minor=0, total_memory=80994MB, multi_processor_count=132)]\", \"cuda_device_names\": [\"NVIDIA H100 80GB HBM3\", \"NVIDIA H100 80GB HBM3\", \"NVIDIA H100 80GB HBM3\", \"NVIDIA H100 80GB HBM3\"]}, \"gpu_description\": \"NVIDIA H100 80GB HBM3 x 4\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-70B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\", \"tokenizer\": \"meta-llama/Meta-Llama-3-70B-Instruct\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 4, \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-70B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-70B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 4, 'disable-log-requests': ''}\"}, \"date\": \"2024-12-15 09:15:08 UTC\", \"model\": \"meta-llama/Meta-Llama-3-70B-Instruct\", \"dataset\": \"sharegpt\"}" } ] + }, + { + "commit": { + "author": { + "name": "dhuangnm", + "username": "dhuangnm", + "email": "74931910+dhuangnm@users.noreply.github.com" + }, + "committer": { + "name": "GitHub", + "username": "web-flow", + "email": "noreply@github.com" + }, + "id": "e72131e83fefd2f56648e07f0d2f2395a7fe7b19", + "message": "Fix failed model tests in nightly (#166)\n\nFix failed model tests. Removed h100 duo partition to get nightly green\r\nand match what upstream does.\r\n\r\nA successful nightly run is here:\r\nhttps://github.com/neuralmagic/nm-vllm-ent/actions/runs/12285198281. The\r\nfailure is a known sampler test failure.\r\n\r\n---------\r\n\r\nCo-authored-by: dhuangnm ", + "timestamp": "2024-12-12T23:24:22Z", + "url": "https://github.com/neuralmagic/nm-vllm-ent/commit/e72131e83fefd2f56648e07f0d2f2395a7fe7b19" + }, + "date": 1734314426482, + "tool": "customSmallerIsBetter", + "benches": [ + { + "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 60.92505881562829, + "unit": "ms", + "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20241216\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\", \"cuda_device_names\": [\"NVIDIA A100-SXM4-80GB\"]}, \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2024-12-16 01:59:11 UTC\", \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"dataset\": \"sharegpt\"}" + }, + { + "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 14.397374163759583, + "unit": "ms", + "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20241216\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\", \"cuda_device_names\": [\"NVIDIA A100-SXM4-80GB\"]}, \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - meta-llama/Meta-Llama-3-8B-Instruct\\nmax-model-len - 4096\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"tokenizer\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'meta-llama/Meta-Llama-3-8B-Instruct', 'tokenizer': 'meta-llama/Meta-Llama-3-8B-Instruct', 'max-model-len': 4096, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2024-12-16 01:59:11 UTC\", \"model\": \"meta-llama/Meta-Llama-3-8B-Instruct\", \"dataset\": \"sharegpt\"}" + }, + { + "name": "{\"name\": \"mean_ttft_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 38.28940287232399, + "unit": "ms", + "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20241216\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\", \"cuda_device_names\": [\"NVIDIA A100-SXM4-80GB\"]}, \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"facebook/opt-350m\", \"tokenizer\": \"facebook/opt-350m\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'facebook/opt-350m', 'tokenizer': 'facebook/opt-350m', 'max-model-len': 2048, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2024-12-16 01:52:48 UTC\", \"model\": \"facebook/opt-350m\", \"dataset\": \"sharegpt\"}" + }, + { + "name": "{\"name\": \"mean_tpot_ms\", \"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\"}", + "value": 4.499223507030415, + "unit": "ms", + "extra": "{\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"benchmarking_context\": {\"vllm_version\": \"0.6.3.0.20241216\", \"python_version\": \"3.10.12\", \"torch_version\": \"2.4.0+cu121\", \"torch_cuda_version\": \"12.1\", \"cuda_devices\": \"[_CudaDeviceProperties(name='NVIDIA A100-SXM4-80GB', major=8, minor=0, total_memory=81049MB, multi_processor_count=108)]\", \"cuda_device_names\": [\"NVIDIA A100-SXM4-80GB\"]}, \"gpu_description\": \"NVIDIA A100-SXM4-80GB x 1\", \"script_name\": \"benchmark_serving.py\", \"script_args\": {\"description\": \"VLLM Serving - Dense\\nmodel - facebook/opt-350m\\nmax-model-len - 2048\\nsparsity - None\\nbenchmark_serving {\\n \\\"nr-qps-pair_\\\": \\\"300,1\\\",\\n \\\"dataset\\\": \\\"sharegpt\\\"\\n}\", \"backend\": \"vllm\", \"version\": \"N/A\", \"base_url\": null, \"host\": \"127.0.0.1\", \"port\": 9000, \"endpoint\": \"/generate\", \"dataset\": \"sharegpt\", \"num_input_tokens\": null, \"num_output_tokens\": null, \"model\": \"facebook/opt-350m\", \"tokenizer\": \"facebook/opt-350m\", \"best_of\": 1, \"use_beam_search\": false, \"log_model_io\": false, \"seed\": 0, \"trust_remote_code\": false, \"disable_tqdm\": false, \"save_directory\": \"benchmark-results\", \"num_prompts_\": null, \"request_rate_\": null, \"nr_qps_pair_\": [300, \"1.0\"], \"server_tensor_parallel_size\": 1, \"server_args\": \"{'model': 'facebook/opt-350m', 'tokenizer': 'facebook/opt-350m', 'max-model-len': 2048, 'host': '127.0.0.1', 'port': 9000, 'tensor-parallel-size': 1, 'disable-log-requests': ''}\"}, \"date\": \"2024-12-16 01:52:48 UTC\", \"model\": \"facebook/opt-350m\", \"dataset\": \"sharegpt\"}" + } + ] } ] }