-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* test lifecycle * comments * comments * add quantization test
- Loading branch information
Showing
1 changed file
with
117 additions
and
0 deletions.
There are no files selected for viewing
117 changes: 117 additions & 0 deletions
117
tests/sparsetensors/quantization/lifecycle/test_lifecycle.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,117 @@ | ||
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from copy import deepcopy | ||
|
||
import torch | ||
from sparsetensors.quantization.lifecycle.calibration import set_module_for_calibration | ||
from sparsetensors.quantization.lifecycle.frozen import freeze_module_quantization | ||
from sparsetensors.quantization.lifecycle.initialize import ( | ||
initialize_module_for_quantization, | ||
) | ||
from sparsetensors.quantization.quant_args import QuantizationArgs | ||
from sparsetensors.quantization.quant_config import QuantizationStatus | ||
from torch.nn import Linear | ||
|
||
|
||
def test_lifecyle(create_quantization_scheme): | ||
num_bits = 8 | ||
|
||
quantization_scheme = create_quantization_scheme( | ||
input_activations=QuantizationArgs(num_bits=num_bits, symmetric=False), | ||
weights=QuantizationArgs(num_bits=num_bits, symmetric=True), | ||
targets=["*"], | ||
) | ||
|
||
layer = Linear(4, 4) | ||
layer.weight.data *= 100 | ||
|
||
# updated layer keys check | ||
expected_layer_keys = {"weight", "bias"} | ||
for key in layer.state_dict().keys(): | ||
expected_layer_keys.remove(key) | ||
assert len(expected_layer_keys) == 0 | ||
|
||
# over write forward pass and register zero_point and scale | ||
initialize_module_for_quantization(layer, quantization_scheme) | ||
expected_layer_keys = { | ||
"input_scale", | ||
"input_zero_point", | ||
"weight_scale", | ||
"weight_zero_point", | ||
"weight", | ||
"bias", | ||
} | ||
for key in layer.state_dict().keys(): | ||
expected_layer_keys.remove(key) | ||
assert len(expected_layer_keys) == 0 | ||
|
||
# should have both input and weight observer after initalizing | ||
assert hasattr(layer, "input_observer") | ||
assert hasattr(layer, "weight_observer") | ||
|
||
assert hasattr(layer, "quantization_scheme") | ||
assert hasattr(layer, "quantization_status") | ||
assert layer.quantization_status == QuantizationStatus.INITIALIZED | ||
|
||
set_module_for_calibration(layer) | ||
assert layer.quantization_status == QuantizationStatus.CALIBRATION | ||
|
||
# do a calibration step | ||
assert torch.numel(layer.input_zero_point.data) == 0 | ||
assert torch.numel(layer.input_scale) == 0 | ||
assert torch.numel(layer.weight_scale) == 0 | ||
assert torch.numel(layer.weight_zero_point) == 0 | ||
|
||
layer(torch.randn(4, 4)) | ||
|
||
# zero-points and scale should be updated after forward pass | ||
assert torch.numel(layer.input_zero_point.data) > 0 | ||
assert torch.numel(layer.input_scale) > 0 | ||
assert torch.numel(layer.weight_scale) > 0 | ||
assert torch.numel(layer.weight_zero_point) > 0 | ||
|
||
# symmetric zero points should center at 0 | ||
assert layer.weight_zero_point.data == 0 | ||
|
||
# check high and low bound of the weights | ||
assert torch.all(layer.weight.data >= -128) and torch.all(layer.weight.data <= 127) | ||
|
||
initalized_layer = deepcopy(layer) | ||
|
||
# calibrate the layers with each iteration | ||
for _ in range(10): | ||
layer(torch.randn(4, 4)) | ||
|
||
assert initalized_layer.input_zero_point != layer.input_zero_point | ||
assert initalized_layer.input_scale != layer.input_scale | ||
assert initalized_layer.weight_scale != layer.weight_scale | ||
|
||
# check quantization f_q(x) is applied after frozen without update | ||
input_check_for_quant = torch.randn(4, 4) | ||
out_calibration = layer(input_check_for_quant) | ||
|
||
layer_before_freeze = deepcopy(layer) | ||
|
||
# Freeze, no update after any forward pass | ||
freeze_module_quantization(layer) | ||
|
||
for _ in range(10): | ||
layer(torch.randn(4, 4)) | ||
assert layer_before_freeze.input_zero_point == layer.input_zero_point | ||
assert layer_before_freeze.input_scale == layer.input_scale | ||
assert layer_before_freeze.weight_scale == layer.weight_scale | ||
|
||
# check that the same quantization is applied as calibration to frozen | ||
assert torch.all(out_calibration == layer(input_check_for_quant)) |