-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* min max test * add minmax obs * test scale range and min_max update
- Loading branch information
Showing
1 changed file
with
89 additions
and
0 deletions.
There are no files selected for viewing
89 changes: 89 additions & 0 deletions
89
tests/sparsetensors/quantization/observers/test_min_max.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import pytest | ||
import torch | ||
from sparsetensors.quantization.quant_args import QuantizationArgs | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"symmetric,expected_scale,expected_zero_point", | ||
[ | ||
(True, 0.0078, 0), | ||
(False, 0.0039, 0), | ||
], | ||
) | ||
def test_min_max_observer(symmetric, expected_scale, expected_zero_point): | ||
tensor = torch.tensor([1, 1, 1, 1, 1]) | ||
num_bits = 8 | ||
weights = QuantizationArgs(num_bits=num_bits, symmetric=symmetric) | ||
|
||
observer = weights.get_observer() | ||
scale, zero_point = observer(tensor) | ||
|
||
assert round(scale.item(), 4) == expected_scale | ||
assert round(zero_point.item(), 4) == expected_zero_point | ||
|
||
|
||
def test_min_max_observer_symmetric_scale_range(): | ||
tensor = torch.rand(4, 4) | ||
tensor *= 127 | ||
|
||
num_bits = 8 | ||
weights = QuantizationArgs(num_bits=num_bits, symmetric=True) | ||
|
||
observer = weights.get_observer() | ||
scale, zero_point = observer(tensor) | ||
|
||
# if symmetric, max symmetric_range = abs(-128) / 255 | ||
assert round(scale.item(), 4) <= 1.0039 | ||
assert round(zero_point.item(), 4) == 0 | ||
|
||
|
||
def test_min_max_observer_value_update(): | ||
inp = torch.tensor([1, 1, 1, 1, 1]) | ||
inp_update_max = torch.tensor([127, 1, 1, 1, 1]) | ||
inp_update_min = torch.tensor([-128, 1, 1, 1, 1]) | ||
|
||
# udpate the min, max twice total | ||
tensors = [ | ||
inp, | ||
inp, | ||
inp_update_max, # update max | ||
inp, | ||
inp_update_min, # update min | ||
] | ||
|
||
tensor = inp | ||
num_bits = 8 | ||
weights = QuantizationArgs(num_bits=num_bits, symmetric=True) | ||
|
||
observer = weights.get_observer() | ||
curr_max = 1 | ||
curr_min = 1 | ||
for i, tensor in enumerate(tensors): | ||
observer(tensor) | ||
curr_max = max(observer.max_val, curr_max) | ||
curr_min = min(observer.min_val, curr_max) | ||
|
||
if i < 2: | ||
assert curr_max == 1 | ||
assert curr_min == 1 | ||
elif i < 4: | ||
assert curr_max == 43 # (127 + 2) / 3 | ||
assert curr_min == 1 | ||
else: | ||
assert curr_max == 43 | ||
assert curr_min == -24.8 # (-128 + 4) / 5 |