diff --git a/src/compressed_tensors/utils/converters/converters.py b/src/compressed_tensors/utils/converters/converters.py index 27349a40..bbedc7d2 100644 --- a/src/compressed_tensors/utils/converters/converters.py +++ b/src/compressed_tensors/utils/converters/converters.py @@ -23,9 +23,11 @@ import torch from compressed_tensors.registry.registry import RegistryMixin from compressed_tensors.utils.converters.transformations import ( + remove_unused_tensors, transform_autogptq_weights_and_reshape_tensors, transform_exllama_names, ) +from compressed_tensors.utils.safetensors_load import validate_safetensors_file_path from safetensors import safe_open from safetensors.torch import save_file from tqdm import tqdm @@ -38,7 +40,7 @@ class ConverterNames(str, Enum): - EXLLAMA_TO_COMPRESSED_TENSOR = "exllama_to_compressed_tensor" + AutoGPTQConverter: str = "exllama_to_compressed_tensor" class BaseConverter(ABC, RegistryMixin): @@ -71,7 +73,7 @@ def convert_from_safetensors( :param save_dir: The directory to save the converted state_dict to :return: The directory where the converted state_dict was saved """ - _validate_safetensors_file_path(filepath) + validate_safetensors_file_path(filepath) filepath_: Path = Path(filepath) if not save_dir: @@ -84,16 +86,23 @@ def convert_from_safetensors( # transform and save the state_dict if filepath_.is_dir(): tqdm.write(f"Converting directory: {filepath}") - tqdm.write(f"Found: {len(list(filepath_.glob('*.safetensors')))} .safetensors files") + tqdm.write( + f"Found: {len(list(filepath_.glob('*.safetensors')))} " + ".safetensors files" + ) for file in filepath_.glob("*.safetensors"): tqdm.write(f"Converting file: {file.name}") new_state_dict = {} state_dict: Iterable[StateDictType] = load_safetensors_state_dict( file, by_layers=True ) - layer_progress_bar = tqdm(state_dict, total=layer_count(file), desc="Converting layers") + layer_progress_bar = tqdm( + state_dict, total=layer_count(file), desc="Converting layers" + ) for layer_state_dict in layer_progress_bar: - layer_name = list(layer_state_dict.keys())[0][:len("model.layers.0")] + layer_name = list(layer_state_dict.keys())[0][ + : len("model.layers.0") + ] layer_progress_bar.set_description(f"Converting layer {layer_name}") layer_progress_bar.update() new_state_dict.update( @@ -101,13 +110,18 @@ def convert_from_safetensors( ) if new_state_dict: + # compress before saving + # compressor = Compressor.load_from_registry( + # name=CompressionFormat.pack_quantized.value + # ) + # new_state_dict = compressor.compress(new_state_dict) save_file( new_state_dict, filename=save_dir_ / file.name, metadata=metadata, ) _copy_non_safetensor_files_(filepath_, save_dir_) - _update_quantization_config(filepath_, save_dir_) + # _update_quantization_config(filepath_, save_dir_) elif filepath_.is_file(): new_state_dict = {} @@ -134,39 +148,28 @@ def transformations(cls) -> Iterable[TransformationType]: raise NotImplementedError() -@BaseConverter.register(name=ConverterNames.EXLLAMA_TO_COMPRESSED_TENSOR) -class ExllamaToCompressedTensorConverter(BaseConverter): +@BaseConverter.register(name=ConverterNames.AutoGPTQConverter) +class AutoGPTQConverter(BaseConverter): """ A converter that applies transformations to the state_dict of a autogptq - quantized model to convert it to a compressed tensor model, which can be - loaded by the SparseAutoModel classes - """ - - @classmethod - def transformations(cls): - return (transform_autogptq_weights_and_reshape_tensors, transform_exllama_names) + quantized model to convert it to a compressed tensor model + Transformations made: -def _validate_safetensors_file_path(filepath: str): - """ - Given a file path, it is valid if: - - The file exists - - The file is either a single .safetensors file or a - directory containing .safetensors files - - :param filepath: A string file path to validate + -> Unpack autogptq 4 bit weight packing + -> Translate exllama names to compressed tensor names + -> Pack 4 bit weights with compressed tensor format + -> Remove unused tensors + -> Update quantization config in config.json file """ - filepath_: Path = Path(filepath) - - if not filepath_.exists(): - raise FileNotFoundError(f"File not found: {filepath}") - - if filepath_.is_dir() and not any(filepath_.glob("*.safetensors")): - raise FileNotFoundError(f"No .safetensors files found in directory: {filepath}") - - if filepath_.is_file() and not filepath_.suffix == ".safetensors": - raise ValueError(f"File must be a .safetensors file: {filepath}") + @classmethod + def transformations(cls): + return ( + transform_autogptq_weights_and_reshape_tensors, + transform_exllama_names, + remove_unused_tensors, + ) def _copy_non_safetensor_files_(source_dir: Path, dest_dir: Path): @@ -178,7 +181,7 @@ def _copy_non_safetensor_files_(source_dir: Path, dest_dir: Path): :param dest_dir: The directory to copy files to """ for file in source_dir.glob("*"): - if file.suffix != ".safetensors": + if file.suffix != ".safetensors" and file.name != "config.json": _LOGGER.info(f"Copying file: {file} to {dest_dir}") shutil.copy(file, dest_dir / file.name) @@ -198,7 +201,9 @@ def _update_quantization_config(source_dir: Path, dest_dir: Path): if hasattr(config, "quantization_config"): _LOGGER.info("Updating quantization config...") quantization_config = config.quantization_config - config.quantization_config = _convert_to_compressed_tensors_config(quantization_config) + config.quantization_config = _convert_to_compressed_tensors_config( + quantization_config + ) config.save_pretrained(dest_dir) @@ -207,12 +212,14 @@ def _convert_to_compressed_tensors_config(quantization_config): Converts the quantization_config attribute from a config.json file to a dictionary - :param quantization_config: The quantization_config attribute from a config.json file + :param quantization_config: The quantization_config + attribute from a config.json file :return: The quantization_config as a dictionary """ compressed_tensor_config = ... return compressed_tensor_config + def layer_count(file_path: str) -> int: """ Count the number of layers in a safetensors file @@ -222,16 +229,15 @@ def layer_count(file_path: str) -> int: """ with safe_open(file_path, framework="pt", device="cpu") as f: keys = sorted(f.keys()) - + last_layer_name = None layer_count = 0 for key in keys: - layer_name = key[:len("model.layers.0")] + layer_name = key[: len("model.layers.0")] if layer_name != last_layer_name: last_layer_name = layer_name layer_count += 1 return layer_count - def load_safetensors_state_dict( @@ -251,7 +257,7 @@ def load_safetensors_state_dict( current_layer = None layer_data = {} for key in sorted(f.keys()): - layer_name = key[:len("model.layers.0")] + layer_name = key[: len("model.layers.0")] if current_layer is None: current_layer = layer_name elif layer_name != current_layer: diff --git a/src/compressed_tensors/utils/converters/main.py b/src/compressed_tensors/utils/converters/main.py index 1f04fc41..dd7516b4 100644 --- a/src/compressed_tensors/utils/converters/main.py +++ b/src/compressed_tensors/utils/converters/main.py @@ -15,11 +15,12 @@ from compressed_tensors.utils.converters.converters import BaseConverter, ConverterNames + __all__ = ["convert_autogptq_checkpoint"] def convert_autogptq_checkpoint( - old_checkpoint_path, new_checkpoint_path ,**kwargs + old_checkpoint_path, new_checkpoint_path, **kwargs ) -> str: """ Convert an autogptq checkpoint to a compressed tensor checkpoint @@ -31,7 +32,7 @@ def convert_autogptq_checkpoint( :return: the path to the new checkpoint """ converter: BaseConverter = BaseConverter.load_from_registry( - ConverterNames.EXLLAMA_TO_COMPRESSED_TENSOR + ConverterNames.AutoGPTQConverter ) checkpoint_path = converter.convert_from_safetensors( old_checkpoint_path, new_checkpoint_path, **kwargs diff --git a/src/compressed_tensors/utils/converters/transformations.py b/src/compressed_tensors/utils/converters/transformations.py index fae69137..1bebfdae 100644 --- a/src/compressed_tensors/utils/converters/transformations.py +++ b/src/compressed_tensors/utils/converters/transformations.py @@ -69,7 +69,7 @@ def transform_exllama_names(state_dict: Dict[str, Tensor]) -> Dict[str, Tensor]: name_map: Dict[str, str] = { ".scales": ".weight_scale", ".qzeros": ".weight_zero_point", - ".qweight": ".weight", + ".qweight": ".weight_packed", } updated_state_dict = {} @@ -91,7 +91,7 @@ def transform_autogptq_weights_and_reshape_tensors( to CompressedTensors conversion The transformations include: - - Unpack ad dequantize the weight tensor using the scales, zeros, and g_idx tensors + - Unpack and dequantize the weight tensor using the scales, zeros, and g_idx tensors - Squeeze the scales tensor to [x] from [1, x] :pre-condition: The state_dict should be for a quantized model @@ -117,13 +117,15 @@ def transform_autogptq_weights_and_reshape_tensors( g_idx = state_dict[key.replace("qweight", "g_idx")] zeros = unpack_zeros(qzeros) - qweight = unpack_int32_into_fp32( - qweight=tensor, - scales=scales, - zeros=zeros, - g_idx=g_idx, - ) - transformed_weights_dict[key] = qweight + # qweight = unpack_int32_into_fp32( + # qweight=tensor, + # scales=scales, + # zeros=zeros, + # g_idx=g_idx, + # ) + new_shape = torch.tensor([tensor.shape[0] * 8, tensor.shape[1]]) + transformed_weights_dict[key] = tensor + transformed_weights_dict[key.replace("qweight", "weight_shape")] = new_shape # transform scales for key, tensor in state_dict.items(): @@ -222,3 +224,17 @@ def unpack_int32_into_fp32( weight = torch.cat(weight, dim=1) return weight + + +def remove_unused_tensors(state_dict: Dict[str, Tensor]) -> Dict[str, Tensor]: + """ + Remove unused tensors from the state_dict + + :param state_dict: The state_dict to be cleaned + :return: The cleaned state_dict + """ + return { + key: tensor + for key, tensor in state_dict.items() + if is_gptq_quantization_target(key) and not key.endswith(".g_idx") + } diff --git a/src/compressed_tensors/utils/safetensors_load.py b/src/compressed_tensors/utils/safetensors_load.py index 9cdac782..35b837e1 100644 --- a/src/compressed_tensors/utils/safetensors_load.py +++ b/src/compressed_tensors/utils/safetensors_load.py @@ -16,6 +16,7 @@ import os import re import struct +from pathlib import Path from typing import Dict, List, Optional from safetensors import safe_open @@ -236,3 +237,25 @@ def is_quantization_param(name: str) -> bool: return True return False + + +def validate_safetensors_file_path(filepath: str): + """ + Given a file path, it is valid if: + - The file exists + - The file is either a single .safetensors file or a + directory containing .safetensors files + + :param filepath: A string file path to validate + """ + + filepath_: Path = Path(filepath) + + if not filepath_.exists(): + raise FileNotFoundError(f"File not found: {filepath}") + + if filepath_.is_dir() and not any(filepath_.glob("*.safetensors")): + raise FileNotFoundError(f"No .safetensors files found in directory: {filepath}") + + if filepath_.is_file() and not filepath_.suffix == ".safetensors": + raise ValueError(f"File must be a .safetensors file: {filepath}") diff --git a/tests/test_utils/test_safetensors_load.py b/tests/test_utils/test_safetensors_load.py new file mode 100644 index 00000000..df53796e --- /dev/null +++ b/tests/test_utils/test_safetensors_load.py @@ -0,0 +1,63 @@ +# Copyright (c) 2021 - present / Neuralmagic, Inc. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import pytest +from compressed_tensors.utils.safetensors_load import validate_safetensors_file_path + + +@pytest.fixture +def temp_dir(tmp_path): + return tmp_path / "subdirectory" + + +@pytest.fixture +def safetensors_file(temp_dir): + temp_dir.mkdir(exists_ok=True) + safetensors_filepath = temp_dir / "test.safetensors" + safetensors_filepath.write_text("content") + return safetensors_filepath + + +@pytest.fixture +def non_safetensors_file(temp_dir): + temp_dir.mkdir(exists_ok=True) + non_safetensors_filepath = temp_dir / "test.txt" + non_safetensors_filepath.write_text("content") + return non_safetensors_filepath + + +def test_validate_safetensors_file_path_file_not_found(): + with pytest.raises(FileNotFoundError): + validate_safetensors_file_path("nonexistent_file.safetensors") + + +def test_validate_safetensors_file_path_no_safetensors_files_in_directory(temp_dir): + temp_dir.mkdir() + with pytest.raises(FileNotFoundError): + validate_safetensors_file_path(str(temp_dir)) + + +def test_validate_safetensors_file_path_file_is_not_safetensors(non_safetensors_file): + with pytest.raises(ValueError): + validate_safetensors_file_path(str(non_safetensors_file)) + + +def test_validate_safetensors_file_path_valid_safetensors_file(safetensors_file): + validate_safetensors_file_path(str(safetensors_file)) + + +def test_validate_safetensors_file_path_valid_directory_with_safetensors_files( + temp_dir, safetensors_file +): + validate_safetensors_file_path(str(temp_dir))