diff --git a/docs/config.qmd b/docs/config.qmd index 120aec8933..ba23384f0c 100644 --- a/docs/config.qmd +++ b/docs/config.qmd @@ -127,34 +127,40 @@ datasets: # - tokenizer_default_fallback_*: where * is the name of the chat template to fallback to if the tokenizer does not have a chat template else default to tokenizer. E.g. tokenizer_default_fallback_chatml. # - jinja: Uses a custom jinja template for the chat template. The custom jinja template should be provided in the chat_template_jinja field. chat_template: tokenizer_default - # Custom jinja template for chat template. This will be only used if `chat_template` is set to `jinja` or empty (in which case chat_template is automatically set to `jinja`). + + # Custom jinja chat template. Used only if `chat_template: jinja` or empty. chat_template_jinja: - # The key in the data example that contains the messages. Default is "messages". + + # Key containing the messages (default: "messages") field_messages: messages - # The key in the message turn that contains the role. Default is "role". + # Key for role in each message (default: "role") message_field_role: role - # The key in the message turn that contains the content. Default is "content". + # Key for content in each message (default: "content") message_field_content: content - # Optional[Dict[str, List]]. Roles mapping for the messages. + + # Optional[Dict[str, List]]. Roles mapping in the messages. The default is: roles: user: ["human", "user"] - assistant: ["gpt", "assistant", "ai"] + assistant: ["gpt", "assistant"] system: ["system"] + tool: ["tool"] - ## NOTE: Leaving the below empty will default to using the simple legacy tokenization strategy where only last message is trained on. + # IMPORTANT: The following fields determine which parts of the conversation to train on. + # Priority order: message_field_training > message_field_training_detail > train_on_inputs or role in roles_to_train + # See examples at `docs/dataset-formats/conversation.qmd` + # Note: If the below 4 fields are empty, defaults to training only on the last message. # Optional[List[str]]. Roles to train on. The tokens from these roles will be considered for the loss. - roles_to_train: ["gpt", "assistant"] + roles_to_train: ["assistant"] # default # Optional[str]. Which EOS tokens to train on in the conversation. Possible values are: # - all: train on all EOS tokens - # - turn: train on the EOS token at the end of each trainable turn + # - turn (default): train on the EOS token at the end of each trainable turn # - last: train on the last EOS token in the conversation train_on_eos: last # The key in the message turn that indicates via boolean whether tokens of a turn should be considered for training. Useful to selectively train on certain turns besides the `roles_to_train`. message_field_training: training # The key in the message turn that contains the training details. Useful to selectively train on certain tokens in a turn. # The value of the key is a List[Dict] containing `begin_offset` (start character index in content), `end_offset` (end character index in content), and `train` (boolean whether to train). - # See example at `docs/dataset-formats/conversation.qmd` message_field_training_detail: train_detail diff --git a/docs/dataset-formats/conversation.qmd b/docs/dataset-formats/conversation.qmd index fb9aed3ffa..9f6e8c3604 100644 --- a/docs/dataset-formats/conversation.qmd +++ b/docs/dataset-formats/conversation.qmd @@ -68,6 +68,8 @@ We recommend checking the below examples for other usecases. datasets: - path: ... type: chat_template + roles_to_train: + train_on_eos: ``` 2. Using the `gemma` chat template to override the tokenizer_config.json's chat template on OpenAI messages format, training on all assistant messages. @@ -77,7 +79,7 @@ chat_template: gemma # this overwrites the tokenizer's chat_template datasets: - path: ... type: chat_template - roles_to_train: ["assistant"] + roles_to_train: ["assistant"] # default value ``` 3. Using the tokenizer_config.json's chat template or `chatml` as fallback if the former's chat template does not exist, on OpenAI messages format, training on all assistant messages. @@ -87,7 +89,6 @@ chat_template: tokenizer_default_fallback_chatml # this overwrites the tokenizer datasets: - path: ... type: chat_template - roles_to_train: ["assistant"] ``` 4. Using a custom jinja template on OpenAI messages format, training on all assistant messages. @@ -99,7 +100,6 @@ chat_template_jinja: "{{ bos_token }}{% for message in messages %}{% if (message datasets: - path: ... type: chat_template - roles_to_train: ["assistant"] ``` 5. (Advanced) Using fine-grained control over tokens and turns to train in a conversation diff --git a/src/axolotl/prompt_strategies/chat_template.py b/src/axolotl/prompt_strategies/chat_template.py index 35c9311678..5b12130d75 100644 --- a/src/axolotl/prompt_strategies/chat_template.py +++ b/src/axolotl/prompt_strategies/chat_template.py @@ -25,8 +25,8 @@ def __init__( processor=None, chat_template=None, max_length=2048, - message_field_role: str = "from", - message_field_content: str = "value", + message_field_role: str = "role", + message_field_content: str = "content", message_field_training: Optional[str] = None, message_field_training_detail: Optional[str] = None, roles: Optional[Dict[str, List[str]]] = None, @@ -41,6 +41,7 @@ def __init__( "assistant": "assistant", "gpt": "assistant", "system": "system", + "tool": "tool", } self.message_field_role = message_field_role @@ -188,7 +189,7 @@ class ChatTemplateStrategy(PromptTokenizingStrategy): Tokenizing strategy for instruction-based prompts. """ - _messages = "conversations" + _messages = "messages" def __init__( self, @@ -279,12 +280,7 @@ def tokenize_prompt(self, prompt): LOG.debug(f"Should train: {should_train}") - turn_start_idx, turn_end_idx = self.find_turn( - conversation_ids=input_ids, turn=index, turn_content=turn - ) - - if turn_start_idx == -1 or turn_end_idx == -1: - LOG.warning(f"Failed to find boundaries for turn {index}") + turn_start_idx, turn_end_idx = self.find_turn(turns=turns, turn_idx=index) LOG.debug(f"Turn indices: start={turn_start_idx}, end={turn_end_idx}") @@ -313,8 +309,8 @@ def tokenize_prompt(self, prompt): LOG.debug(f"Labels after processing turn {index}: {labels}") # Handle EOS token - eos_idx = self.find_eos_token(input_ids, turn_end_idx) - if eos_idx == turn_end_idx: + eos_idx = self.find_first_eos_token(input_ids, start_idx=turn_end_idx) + if abs(eos_idx - turn_end_idx) <= 3: # Allow for some template padding last_eos_idx = eos_idx if self.train_on_eos == "all" or ( self.train_on_eos == "turn" and should_train @@ -339,75 +335,120 @@ def tokenize_prompt(self, prompt): "attention_mask": [1] * len(input_ids), } - def find_eos_token(self, input_ids, start_idx): + def find_first_eos_token(self, input_ids, start_idx): eos_token_id = self.tokenizer.eos_token_id for i in range(start_idx, len(input_ids)): if input_ids[i] == eos_token_id: return i return -1 - def find_turn(self, conversation_ids: list[int], turn: int, turn_content: dict): + def find_turn(self, turns: list[dict], turn_idx: int): """ Locate the starting and ending indices of the specified turn in a conversation. """ - content = turn_content.get("content") - content_ids = self.tokenizer.encode(content, add_special_tokens=False) + # pylint: disable=too-many-return-statements - LOG.debug(f"content_ids (length {len(content_ids)}): {content_ids}") + if turn_idx >= len(turns): + raise ValueError(f"Turn index {turn_idx} out of range") - if not content_ids: - LOG.warning(f"Empty content for turn {turn}") + # mistral does not output message if it contains only system message + if ( + turn_idx == 0 + and turns[0].get("role") == "system" + and "mistral" in self.tokenizer.name_or_path.lower() + ): return -1, -1 - # For first turn, start from beginning - if turn == 0: - start_search_idx = 0 - else: - # For subsequent turns, find the previous EOS token - eos_token_id = self.tokenizer.eos_token_id - eos_count = 0 - start_search_idx = 0 - - for i, token_id in enumerate(conversation_ids): - if token_id == eos_token_id: - eos_count += 1 - if eos_count == turn: # Find the nth EOS token where n = turn - start_search_idx = i + 1 - break - - # we can optimize this to only search for a few tokens from start_search_idx - # but it would risk missing the content if it's not found within the first few tokens or - # if start_search_idx cannot be found above. - last_index = len(conversation_ids) - len(content_ids) + 1 - - if last_index < start_search_idx: + empty_turn = { + "role": turns[turn_idx].get("role"), + "content": "[[dummy_message]]", + } + + # Create conversation versions + turns_with_empty = turns[:turn_idx] + [empty_turn] + turns_with_content = turns[: turn_idx + 1] + + # Generate the conversation up to the turn, with final turn replaced with dummy content + dummy_ids = self.prompter.build_prompt(turns_with_empty) # type: ignore + + # Generate the conversation up to the turn, with final turn included + full_ids = self.prompter.build_prompt(turns_with_content) # type: ignore + + if not full_ids or not dummy_ids: + LOG.warning(f"Empty template generated for turn {turn_idx}") + return -1, -1 + + # Find first difference (start of content) + start_idx = None + min_len = min(len(dummy_ids), len(full_ids)) + for i in range(min_len): + if dummy_ids[i] != full_ids[i]: + start_idx = i + break + + if start_idx is None: + LOG.warning(f"Could not find content start boundary for turn {turn_idx}") + return -1, -1 + + # Find last difference (end of content) + end_idx = None + for i in range(min_len): + dummy_pos = len(dummy_ids) - 1 - i + full_pos = len(full_ids) - 1 - i + if dummy_ids[dummy_pos] != full_ids[full_pos]: + end_idx = full_pos + 1 # Add one to include the last token when slice + break + + if end_idx is None: + LOG.warning(f"Could not find content end boundary for turn {turn_idx}") + return -1, -1 + + if end_idx < start_idx: + LOG.warning( + f"Content end boundary is before start boundary for turn {turn_idx}" + ) + return -1, -1 + + if end_idx == start_idx: LOG.warning( - f"last_index to search is less than start_search_idx for turn {turn}" + f"Content end boundary is the same as start boundary for turn {turn_idx}. This is likely an empty turn." ) return -1, -1 - # Search for content starting from start_search_idx - first_elem = content_ids[0] - for i in range(start_search_idx, last_index): - # Quick check of first element before doing full comparison - if conversation_ids[i] == first_elem: - # Check if the rest of the content matches - if conversation_ids[i : i + len(content_ids)] == content_ids: - LOG.debug(f"Found turn {turn} content at position {i}") - return i, i + len(content_ids) + LOG.debug(f"Content boundaries: {start_idx}, {end_idx}") + LOG.debug( + f"Content tokens: {self.tokenizer.convert_ids_to_tokens(full_ids[start_idx:end_idx])}" + ) - return -1, -1 + return start_idx, end_idx def get_conversation_thread(self, prompt): - turns = [ - { - "role": self.prompter.roles[t[self.prompter.message_field_role]], - "content": t[self.prompter.message_field_content], - "training": t.get(self.prompter.message_field_training), - "training_detail": t.get(self.prompter.message_field_training_detail), - } - for t in prompt[self.messages] + turns = [] + optional_keys = [ + "tool_calls", # tool that 'assistant' calls + "name", # name of tool given by 'tool' + "tool_call_id", # mistral/mixtral requires this ] + for message in prompt[self.messages]: + turn = { + "role": self.prompter.roles[message[self.prompter.message_field_role]], + "training": message.get(self.prompter.message_field_training), + "training_detail": message.get( + self.prompter.message_field_training_detail + ), + } + + # do not add content if None as it may conflict with some templates due to tools + content = message.get(self.prompter.message_field_content, None) + if content is not None: + turn["content"] = content + + for key in optional_keys: + value = message.get(key, None) + if value is not None: + turn[key] = value + + turns.append(turn) if self.prompter.drop_system_message and turns[0]["role"] == "system": turns = turns[1:] @@ -446,8 +487,8 @@ def load(tokenizer, cfg, ds_cfg: Optional[Dict[str, Any]] = None, processor=None strategy_params = { "train_on_inputs": cfg.train_on_inputs, "sequence_len": cfg.sequence_len, - "roles_to_train": ds_cfg.get("roles_to_train", []), - "train_on_eos": ds_cfg.get("train_on_eos", None), + "roles_to_train": ds_cfg.get("roles_to_train", ["assistant"]), + "train_on_eos": ds_cfg.get("train_on_eos", "turn"), } strategy = ChatTemplateStrategy( diff --git a/src/axolotl/utils/chat_templates.py b/src/axolotl/utils/chat_templates.py index ffe5e24853..682a0449e8 100644 --- a/src/axolotl/utils/chat_templates.py +++ b/src/axolotl/utils/chat_templates.py @@ -25,7 +25,7 @@ "llama3": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}", "llama3_2_vision": '{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now("%d %b %Y") %}\n {%- else %}\n {%- set date_string = "26 Jul 2024" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0][\'role\'] == \'system\' %}\n {%- set system_message = messages[0][\'content\']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = "" %}\n{%- endif %}\n\n{#- Find out if there are any images #}\n{% set image_ns = namespace(has_images=false) %} \n{%- for message in messages %}\n {%- for content in message[\'content\'] %}\n {%- if content[\'type\'] == \'image\' %}\n {%- set image_ns.has_images = true %}\n {%- endif %}\n {%- endfor %}\n{%- endfor %}\n\n{#- Error out if there are images and system message #}\n{%- if image_ns.has_images and not system_message == "" %}\n {{- raise_exception("Prompting with images is incompatible with system messages.") }}\n{%- endif %}\n\n{#- System message if there are no images #}\n{%- if not image_ns.has_images %}\n {{- "<|start_header_id|>system<|end_header_id|>\\n\\n" }}\n {%- if tools is not none %}\n {{- "Environment: ipython\\n" }}\n {%- endif %}\n {{- "Cutting Knowledge Date: December 2023\\n" }}\n {{- "Today Date: " + date_string + "\\n\\n" }}\n {%- if tools is not none and not tools_in_user_message %}\n {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}\n {{- \'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.\' }}\n {{- "Do not use variables.\\n\\n" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- "\\n\\n" }}\n {%- endfor %}\n {%- endif %}\n {{- system_message }}\n {{- "<|eot_id|>" }}\n{%- endif %}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0][\'content\']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception("Cannot put tools in the first user message when there\'s no first user message!") }}\n{%- endif %}\n {{- \'<|start_header_id|>user<|end_header_id|>\\n\\n\' -}}\n {{- "Given the following functions, please respond with a JSON for a function call " }}\n {{- "with its proper arguments that best answers the given prompt.\\n\\n" }}\n {{- \'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.\' }}\n {{- "Do not use variables.\\n\\n" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- "\\n\\n" }}\n {%- endfor %}\n {{- first_user_message + "<|eot_id|>"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == \'ipython\' or message.role == \'tool\' or \'tool_calls\' in message) %}\n {{- \'<|start_header_id|>\' + message[\'role\'] + \'<|end_header_id|>\\n\\n\' }}\n {%- if message[\'content\'] is string %}\n {{- message[\'content\'] }}\n {%- else %}\n {%- for content in message[\'content\'] %}\n {%- if content[\'type\'] == \'image\' %}\n {{- \'<|image|>\' }}\n {%- elif content[\'type\'] == \'text\' %}\n {{- content[\'text\'] }}\n {%- endif %}\n {%- endfor %}\n {%- endif %}\n {{- \'<|eot_id|>\' }}\n {%- elif \'tool_calls\' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception("This model only supports single tool-calls at once!") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- \'<|start_header_id|>assistant<|end_header_id|>\\n\\n\' -}}\n {{- \'{"name": "\' + tool_call.name + \'", \' }}\n {{- \'"parameters": \' }}\n {{- tool_call.arguments | tojson }}\n {{- "}" }}\n {{- "<|eot_id|>" }}\n {%- elif message.role == "tool" or message.role == "ipython" %}\n {{- "<|start_header_id|>ipython<|end_header_id|>\\n\\n" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- "<|eot_id|>" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- \'<|start_header_id|>assistant<|end_header_id|>\\n\\n\' }}\n{%- endif %}\n', "phi_3": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|system|>' + '\n' + message['content'] + '<|end|>' + '\n'}}{% elif (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif message['role'] == 'assistant' %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}", - "phi_35": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}", + "phi_35": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% endif %}", "deepseek_v2": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ '<|User|>' + message['content'] }}{% elif message['role'] == 'assistant' %}{{ '<|Assistant|>' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\n\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|Assistant|>' }}{% endif %}", "jamba": '{# Variables #}\n{% set ns = namespace(message_count=0, is_last_checked_defined=False) %}\n{##}\n{% set bom_str = bom_str or "<|bom|>" %}\n{% set eom_str = eom_str or "<|eom|>" %}\n{% set default_system_message = "" %}\n{##}\n{% set documents_prefix = "" %}\n{% set documents_suffix = "" %}\n{% set tool_definitions_prefix = "" %}\n{% set tool_definitions_suffix = "" %}\n{% set active_modes_prefix = "" %}\n{% set active_modes_suffix = "" %}\n{##}\n{% set tool_calls_prefix = "" %}\n{% set tool_calls_suffix = "" %}\n{% set citations_prefix = "" %}\n{% set citations_suffix = "" %}\n{##}\n{% if add_generation_prompt is not defined %}\n {% set add_generation_prompt = True %}\n{% endif %}\n{% set role_to_predict = role_to_predict or "assistant" %}\n{% if messages|length > 0 and messages[0].role == "system" %}\n {% set system_message = messages[0].content %}\n {% set loop_messages = messages[1:] %}\n{% else %}\n {% set system_message = default_system_message %}\n {% set loop_messages = messages %}\n{% endif %}\n{##}\n{##}\n{# Macros #}\n{% macro handle_tool_definitions(tools) %}\n {{- tool_definitions_prefix -}}\n {{- "\\n# Tools" -}}\n {{- "\\n\\n## Functions" -}}\n {% for tool in tools %}\n {% set _ = is_param_set(tool, field="type") %}\n {% set is_tool_type_set = ns.is_last_checked_defined %}\n {% if is_tool_type_set %}\n {% if tool.type == "function" %}\n {% set tool = tool.function %}\n {% else %}\n {{ raise_exception("Currently, the only supported tool type is `function`") }}\n {% endif %}\n {% endif %}\n {{- "\\n\\n" + (tool|tojson(indent=2)) -}}\n {% endfor %}\n {{- "\\n" + tool_definitions_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_first_system_message(system_message, tools) %}\n {{- bom_str + handle_role("system") -}}\n {% set _ = is_param_set(system_message) %}\n {% set is_system_message_set = ns.is_last_checked_defined %}\n {% if is_system_message_set %}\n {{- system_message -}}\n {% endif %}\n {% set _ = is_param_set(tools, is_list=True) %}\n {% set is_tools_set = ns.is_last_checked_defined %}\n {% if is_tools_set %}\n {% if system_message %}\n {{- "\\n\\n" -}}\n {% endif %}\n {{- handle_tool_definitions(tools) -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_tool_calls(tool_calls) %}\n {{- tool_calls_prefix + "[\\n" -}}\n {% for tool_call in tool_calls %}\n {% set _ = is_param_set(tool_call, field="function") %}\n {% set is_tool_call_function_set = ns.is_last_checked_defined %}\n {% if is_tool_call_function_set %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {% set arguments = tool_call.arguments %}\n {% if arguments is not string %}\n {%- set arguments = arguments|tojson -%}\n {%- endif %}\n {{ "{\\"name\\": \\"" + tool_call.name + "\\", \\"arguments\\": " + arguments + "}" -}}\n {% if not loop.last %}\n {{- "," }}\n {% endif %}\n {% endfor %}\n {{- "\\n]" + tool_calls_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_documents(documents) %}\n {{- documents_prefix -}}\n {{- "\\n# Documents" -}}\n {{- "\\n\\nYou can use the following documents for reference:" -}}\n {% for doc in documents %}\n {{- "\\n\\n## Document ID: " + loop.index0|string -}}\n {% set _ = is_param_set(doc, field="title") %}\n {% set is_doc_title_set = ns.is_last_checked_defined %}\n {% if is_doc_title_set %}\n {{- "\\nTitle: " + doc.title -}}\n {% endif %}\n {% for key, value in doc.items() %}\n {% if key not in ["title", "text"] %}\n {{- "\\n" + key|title + ": " + value|string -}}\n {% endif %}\n {% endfor %}\n {{- "\\nText: " + doc.text -}}\n {% endfor %}\n {{- "\\n" + documents_suffix -}}\n{% endmacro %}\n{##}\n{% macro handle_knobs(knobs) %}\n {{- active_modes_prefix -}}\n {{- "\\n# Active Modes" -}}\n {{ "\\n\\nThe following modes configure the format or style of your responses. You should adhere to all currently" -}}\n {{ " active modes simultaneously." -}}\n {% if knobs.citation_mode == "fast" %}\n {{- "\\n\\n## Citation Mode" -}}\n {{- "\\n\\nProvide a list of references only for the documents you base your response on. Format your response" -}}\n {{ " with the original answer followed by a citation section. Use this template:" -}}\n {{ " `{answer}" + citations_prefix + "DOCUMENT_IDS" + citations_suffix + "`, where DOCUMENT_IDS are the relevant document numbers" -}}\n {{ " (e.g. [2, 5, 9]), or [] if the answer cannot be supported by the provided documents." -}}\n {% endif %}\n {% if knobs.response_format == "json_object" %}\n {{- "\\n\\n## JSON Mode" -}}\n {{ "\\n\\nProvide your response in JSON format. Adhere strictly to any schema given by the user." -}}\n {{ " If an appropriate JSON format exists, use it without modification." -}}\n {% endif %}\n {{- "\\n" + active_modes_suffix -}}\n{% endmacro %}\n{##}\n{% macro get_last_user_index(messages) %}\n {% set ns.last_user_index = 0 %}\n {% for message in messages %}\n {% if message.role == \'user\' %}\n {% set ns.last_user_index = loop.index0 %}\n {% endif %}\n {% endfor %}\n {{- ns.last_user_index -}}\n{% endmacro %}\n{##}\n{% macro handle_last_system_message(documents, knobs, use_documents, use_knobs) %}\n {{- bom_str + handle_role("system") -}}\n {% set macros_to_call = [] %}\n {% set params_for_macros = [] %}\n {% if use_documents %}\n {% set macros_to_call = macros_to_call + [handle_documents] %}\n {% set params_for_macros = params_for_macros + [[documents]] %}\n {% endif %}\n {% if use_knobs %}\n {% set macros_to_call = macros_to_call + [handle_knobs] %}\n {% set params_for_macros = params_for_macros + [[knobs]] %}\n {% endif %}\n {% for i in range(macros_to_call|length) %}\n {% if i > 0 %}\n {{- "\\n\\n" -}}\n {% endif %}\n {{- macros_to_call[i](*params_for_macros[i]) -}}\n {% endfor %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endmacro %}\n{##}\n{% macro handle_role(role, add_space=True) %}\n {{- "<|" + role + "|>" -}}\n {% if add_space %}\n {{- " " -}}\n {% endif %}\n{% endmacro %}\n{##}\n{% macro is_param_set(param, field=none, is_list=False) %}\n {% if field is not none %}\n {% if field in param %}\n {% set param = param[field] %}\n {% else %}\n {% set param = none %}\n {% endif %}\n {% endif %}\n {% set is_defined = param is defined and param is not none %}\n {% if is_list %}\n {% set ns.is_last_checked_defined = is_defined and param|length > 0 %}\n {% else %}\n {% set ns.is_last_checked_defined = is_defined %}\n {% endif %}\n{% endmacro %}\n{##}\n{##}\n{# Template #}\n{{- "<|startoftext|>" -}}\n{% set _ = is_param_set(system_message) %}\n{% set is_system_message_set = ns.is_last_checked_defined %}\n{% set _ = is_param_set(tools, is_list=True) %}\n{% set is_tools_set = ns.is_last_checked_defined %}\n{% set has_system_message = (is_system_message_set or is_tools_set) %}\n{% if has_system_message %}\n {{- handle_first_system_message(system_message, tools) -}}\n{% endif %}\n{% set last_user_index = get_last_user_index(loop_messages)|int %}\n{% for message in loop_messages %}\n {% if loop.index0 == last_user_index %}\n {% set _ = is_param_set(documents, is_list=True) %}\n {% set use_documents = ns.is_last_checked_defined %}\n {% set _ = is_param_set(knobs) %}\n {% set use_knobs = ns.is_last_checked_defined and knobs.is_set %}\n {% set add_last_system_message = use_documents or use_knobs %}\n {% if add_last_system_message %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- handle_last_system_message(documents, knobs, use_documents, use_knobs) -}}\n {% endif %}\n {% endif %}\n {% set role = message.role %}\n {% set _ = is_param_set(message, field="name") %}\n {% set is_message_name_set = ns.is_last_checked_defined %}\n {% if is_message_name_set %}\n {% set message_prefix = handle_role(role) + "(" + message.name + ")" %}\n {% else %}\n {% set message_prefix = handle_role(role) %}\n {% endif %}\n {% set content = (message.content or "") %}\n {% if content is not string %}\n {% set content = content|tojson %}\n {% endif %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + message_prefix + content -}}\n {% set _ = is_param_set(message, field="tool_calls", is_list=True) %}\n {% set is_tool_calls_set = ns.is_last_checked_defined %}\n {% if role == "assistant" and is_tool_calls_set %}\n {{- handle_tool_calls(message.tool_calls) -}}\n {% endif %}\n {% set _ = is_param_set(message, field="citations", is_list=True) %}\n {% set is_citations_set = ns.is_last_checked_defined %}\n {% if role == "assistant" and is_citations_set %}\n {{- citations_prefix + message.citations|map(attribute="document_id")|list|string + citations_suffix -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% endfor %}\n{% if add_generation_prompt %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n {{- bom_str + handle_role(role_to_predict, add_space=False) -}}\n {% set _ = is_param_set(generation_preamble) %}\n {% set is_generation_preamble_set = ns.is_last_checked_defined %}\n {% if is_generation_preamble_set and generation_preamble.strip() != "" %}\n {{- " " + generation_preamble -}}\n {% endif %}\n {% set ns.message_count = ns.message_count + 1 %}\n{% else %}\n {% if ns.message_count > 0 %}\n {{- eom_str -}}\n {% endif %}\n{% endif %}\n', "qwen_25": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within XML tags:\\n\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n\\n\\nFor each function call, return a json object with function name and arguments within XML tags:\\n\\n{\\\"name\\\": , \\\"arguments\\\": }\\n<|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n\\n' }}\n {{- message.content }}\n {{- '\\n' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n", diff --git a/tests/prompt_strategies/conftest.py b/tests/prompt_strategies/conftest.py index 00a2bf3004..fdfcbff438 100644 --- a/tests/prompt_strategies/conftest.py +++ b/tests/prompt_strategies/conftest.py @@ -7,6 +7,8 @@ from huggingface_hub import hf_hub_download from transformers import AutoTokenizer +from axolotl.utils.chat_templates import _CHAT_TEMPLATES + @pytest.fixture(name="assistant_dataset") def fixture_assistant_dataset(): @@ -59,7 +61,52 @@ def fixture_basic_dataset(): ) -@pytest.fixture(name="llama3_tokenizer") +@pytest.fixture(name="toolcalling_dataset") +def fixture_toolcalling_dataset(): + # pylint: disable=duplicate-code + return Dataset.from_list( + [ + { + "messages": [ + { + "role": "system", + "content": "You are a bot that responds to weather queries. You should reply with the unit used in the queried location.", + }, + { + "role": "user", + "content": "Hey, what's the temperature in Paris right now?", + }, + { + "role": "assistant", + "tool_calls": [ + { + "type": "function", + "function": { + "name": "get_current_temperature", + "arguments": { + "location": "Paris, France", + "unit": "celsius", + }, + }, + } + ], + }, + { + "role": "tool", + "name": "get_current_temperature", + "content": "22.0", + }, + { + "role": "assistant", + "content": "The temperature in Paris is 22.0 degrees Celsius.", + }, + ] + } + ] + ) + + +@pytest.fixture(name="llama3_tokenizer", scope="session", autouse=True) def fixture_llama3_tokenizer(): hf_hub_download( repo_id="NousResearch/Meta-Llama-3-8B-Instruct", @@ -77,7 +124,53 @@ def fixture_llama3_tokenizer(): return tokenizer -@pytest.fixture(name="phi35_tokenizer") +@pytest.fixture(name="mistralv03_tokenizer", scope="session", autouse=True) +def fixture_mistralv03_tokenizer(): + tokenizer = AutoTokenizer.from_pretrained( + "mlx-community/Mistral-7B-Instruct-v0.3-4bit" + ) + return tokenizer + + +@pytest.fixture(name="phi35_tokenizer", scope="session", autouse=True) def fixture_phi35_tokenizer(): tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct") return tokenizer + + +@pytest.fixture(name="gemma2_tokenizer", scope="session", autouse=True) +def fixture_gemma2_tokenizer(): + tokenizer = AutoTokenizer.from_pretrained("mlx-community/gemma-2-9b-it-4bit") + + return tokenizer + + +@pytest.fixture(name="mistralv03_tokenizer_chat_template_jinja") +def fixture_mistralv03_chat_template_jinja_w_system() -> str: + return '{%- if messages[0]["role"] == "system" %}\n {%- set system_message = messages[0]["content"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr("role", "equalto", "user") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n {%- if not (message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n {%- if (message["role"] == "user") != (ns.index % 2 == 0) %}\n {{- raise_exception("After the optional system message, conversation roles must alternate user/assistant/user/assistant/...") }}\n {%- endif %}\n {%- set ns.index = ns.index + 1 %}\n {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if message["role"] == "user" %}\n {%- if tools is not none and (message == user_messages[-1]) %}\n {{- "[AVAILABLE_TOOLS] [" }}\n {%- for tool in tools %}\n {%- set tool = tool.function %}\n {{- \'{"type": "function", "function": {\' }}\n {%- for key, val in tool.items() if key != "return" %}\n {%- if val is string %}\n {{- \'"\' + key + \'": "\' + val + \'"\' }}\n {%- else %}\n {{- \'"\' + key + \'": \' + val|tojson }}\n {%- endif %}\n {%- if not loop.last %}\n {{- ", " }}\n {%- endif %}\n {%- endfor %}\n {{- "}}" }}\n {%- if not loop.last %}\n {{- ", " }}\n {%- else %}\n {{- "]" }}\n {%- endif %}\n {%- endfor %}\n {{- "[/AVAILABLE_TOOLS]" }}\n {%- endif %}\n {%- if loop.first and system_message is defined %}\n {{- "[INST] " + system_message + "\\n\\n" + message["content"] + "[/INST]" }}\n {%- else %}\n {{- "[INST] " + message["content"] + "[/INST]" }}\n {%- endif %}\n {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n {{- "[TOOL_CALLS] [" }}\n {%- for tool_call in message.tool_calls %}\n {%- set out = tool_call.function|tojson %}\n {{- out[:-1] }}\n {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}\n {%- endif %}\n {{- \', "id": "\' + tool_call.id + \'"}\' }}\n {%- if not loop.last %}\n {{- ", " }}\n {%- else %}\n {{- "]" + eos_token }}\n {%- endif %}\n {%- endfor %}\n {%- elif message["role"] == "assistant" %}\n {{- " " + message["content"]|trim + eos_token}}\n {%- elif message["role"] == "tool_results" or message["role"] == "tool" %}\n {%- if message.content is defined and message.content.content is defined %}\n {%- set content = message.content.content %}\n {%- else %}\n {%- set content = message.content %}\n {%- endif %}\n {{- \'[TOOL_RESULTS] {"content": \' + content|string + ", " }}\n {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n {{- raise_exception("Tool call IDs should be alphanumeric strings with length 9!") }}\n {%- endif %}\n {{- \'"call_id": "\' + message.tool_call_id + \'"}[/TOOL_RESULTS]\' }}\n {%- else %}\n {{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}\n {%- endif %}\n{%- endfor %}\n' + + +@pytest.fixture(name="gemma2_tokenizer_chat_template_jinja") +def fixture_gemma2_chat_template_jinja_w_system() -> str: + return "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{{ '' + role + '\n' + message['content'] | trim + '\n' }}{% endfor %}{% if add_generation_prompt %}{{'model\n'}}{% endif %}" + + +@pytest.fixture(name="llama3_2_vision_chat_template_jinja") +def fixture_llama3_2_vision_with_hardcoded_date() -> str: + """Hardcodes the date in the template to avoid the need for date logic in the prompt""" + + template = _CHAT_TEMPLATES["llama3_2_vision"] + + old_date_logic = """{%- if not date_string is defined %} + {%- if strftime_now is defined %} + {%- set date_string = strftime_now("%d %b %Y") %} + {%- else %} + {%- set date_string = "26 Jul 2024" %} + {%- endif %} +{%- endif %}""" + + new_date_logic = """{%- set date_string = "17 Dec 2024" %}""" + + modified_template = template.replace(old_date_logic, new_date_logic) + + return modified_template diff --git a/tests/prompt_strategies/test_chat_templates.py b/tests/prompt_strategies/test_chat_templates.py index 4ec12b82cb..8ec4fa1191 100644 --- a/tests/prompt_strategies/test_chat_templates.py +++ b/tests/prompt_strategies/test_chat_templates.py @@ -140,7 +140,6 @@ def test_phi35(self, phi35_tokenizer, assistant_dataset): 1781, 26966, 32007, # user eot 32001, # assistant 1781, 26966, 32007, # assistant eot - 32000, # eos ] expected_labels = [ -100, # user @@ -151,7 +150,6 @@ def test_phi35(self, phi35_tokenizer, assistant_dataset): -100, -100, -100, # user eot -100, # assistant 1781, 26966, 32007, # assistant eot - 32000, # eos ] # fmt: on LOG.debug(f"Expected input_ids: {expected_input_ids}") @@ -230,7 +228,10 @@ def test_llama3_assistant(self, llama3_tokenizer, sharegpt_dataset): # pylint: disable=duplicate-code strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + llama3_tokenizer, + chat_template=get_chat_template("llama3"), + message_field_role="from", + message_field_content="value", ), tokenizer=llama3_tokenizer, train_on_inputs=False, @@ -238,6 +239,7 @@ def test_llama3_assistant(self, llama3_tokenizer, sharegpt_dataset): sequence_len=512, roles_to_train=["gpt"], ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(sharegpt_dataset[0]) input_ids = res["input_ids"] labels = res["labels"] @@ -283,7 +285,10 @@ def test_llama3_human(self, llama3_tokenizer, sharegpt_dataset): # pylint: disable=duplicate-code strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + llama3_tokenizer, + chat_template=get_chat_template("llama3"), + message_field_role="from", + message_field_content="value", ), tokenizer=llama3_tokenizer, train_on_inputs=False, @@ -291,6 +296,7 @@ def test_llama3_human(self, llama3_tokenizer, sharegpt_dataset): sequence_len=512, roles_to_train=["human"], ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(sharegpt_dataset[0]) input_ids = res["input_ids"] labels = res["labels"] @@ -336,7 +342,10 @@ def test_llama3_system_human(self, llama3_tokenizer, basic_dataset): # pylint: disable=duplicate-code strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + llama3_tokenizer, + chat_template=get_chat_template("llama3"), + message_field_role="from", + message_field_content="value", ), tokenizer=llama3_tokenizer, train_on_inputs=False, @@ -344,6 +353,7 @@ def test_llama3_system_human(self, llama3_tokenizer, basic_dataset): sequence_len=512, roles_to_train=["system", "human"], ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) input_ids = res["input_ids"] labels = res["labels"] @@ -389,5 +399,148 @@ def test_llama3_system_human(self, llama3_tokenizer, basic_dataset): ), f"Labels mismatch: {labels} != {expected_labels}" +class TestAssistantToolCallingChatTemplateLlama32Vision: + """ + Test class for assistant style datasets with tool_calling prompts using the llama-32_vision chat template. + """ + + def test_llama32vision_train_on_assistant( + self, llama3_tokenizer, toolcalling_dataset, llama3_2_vision_chat_template_jinja + ): + LOG.info( + "Testing assistant style datasets with tool_calling with llama-32 chat template, training on assistant" + ) + + strategy = ChatTemplateStrategy( + ChatTemplatePrompter( + llama3_tokenizer, + chat_template=get_chat_template( + "jinja", jinja_template=llama3_2_vision_chat_template_jinja + ), + message_field_role="role", + message_field_content="content", + ), + tokenizer=llama3_tokenizer, + train_on_inputs=False, + train_on_eos="turn", + sequence_len=512, + roles_to_train=["assistant"], + ) + + res = strategy.tokenize_prompt(toolcalling_dataset[0]) + + input_ids = res["input_ids"] + labels = res["labels"] + + # fmt: off + expected_input_ids = [ + 128000, # bos + 128006, 9125, 128007, 271, # system header + 38766, 1303, 33025, 2696, 25, 6790, 220, 2366, 18, 198, 15724, 2696, 25, 220, 1114, 3799, 220, 2366, 19, 271, # system date prompt + 2675, 527, 264, 11164, 430, 31680, 311, 9282, 20126, 13, 1472, 1288, 10052, 449, 279, 5089, 1511, 304, 279, 79002, 3813, 13, 128009, # system message + 128006, 882, 128007, 271, # user header + 19182, 11, 1148, 596, 279, 9499, 304, 12366, 1314, 1457, 30, 128009, # user message + 128006, 78191, 128007, 271, # assistant header + 5018, 609, 794, 330, 456, 11327, 54625, 498, 330, 14105, 794, 5324, 2588, 794, 330, 60704, 11, 9822, 498, 330, 3928, 794, 330, 66, 41347, 32075, 128009, # assistant message + 128006, 23799, 4690, 128007, 271, # tool header + 1, 1313, 13, 15, 1, 128009, # tool message + 128006, 78191, 128007, 271, # assistant header + 791, 9499, 304, 12366, 374, 220, 1313, 13, 15, 12628, 62447, 13, 128009 # assistant message + ] + + expected_labels = [ + IGNORE_TOKEN_ID, # bos + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # system header + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # system date prompt + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # system message + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # user header + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # user message + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # assistant header + 5018, 609, 794, 330, 456, 11327, 54625, 498, 330, 14105, 794, 5324, 2588, 794, 330, 60704, 11, 9822, 498, 330, 3928, 794, 330, 66, 41347, 32075, 128009, # assistant message + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # tool header + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # tool message + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # assistant header + 791, 9499, 304, 12366, 374, 220, 1313, 13, 15, 12628, 62447, 13, 128009 # assistant message + ] + # fmt: on + + assert ( + input_ids == expected_input_ids + ), f"Input IDs mismatch: {input_ids} != {expected_input_ids}" + + assert ( + labels == expected_labels + ), f"Labels mismatch: {labels} != {expected_labels}" + + def test_llama32vision_train_on_tools( + self, llama3_tokenizer, toolcalling_dataset, llama3_2_vision_chat_template_jinja + ): + LOG.info( + "Testing assistant style datasets with tool_calling with llama-32 chat template, training on tools" + ) + # pylint: disable=duplicate-code + + strategy = ChatTemplateStrategy( + ChatTemplatePrompter( + llama3_tokenizer, + chat_template=get_chat_template( + "jinja", jinja_template=llama3_2_vision_chat_template_jinja + ), + message_field_role="role", + message_field_content="content", + ), + tokenizer=llama3_tokenizer, + train_on_inputs=False, + train_on_eos="turn", + sequence_len=512, + roles_to_train=["assistant", "tool"], + ) + + res = strategy.tokenize_prompt(toolcalling_dataset[0]) + + input_ids = res["input_ids"] + labels = res["labels"] + + # fmt: off + expected_input_ids = [ + 128000, # bos + 128006, 9125, 128007, 271, # system header + 38766, 1303, 33025, 2696, 25, 6790, 220, 2366, 18, 198, 15724, 2696, 25, 220, 1114, 3799, 220, 2366, 19, 271, # system date prompt + 2675, 527, 264, 11164, 430, 31680, 311, 9282, 20126, 13, 1472, 1288, 10052, 449, 279, 5089, 1511, 304, 279, 79002, 3813, 13, 128009, # system message + 128006, 882, 128007, 271, # user header + 19182, 11, 1148, 596, 279, 9499, 304, 12366, 1314, 1457, 30, 128009, # user message + 128006, 78191, 128007, 271, # assistant header + 5018, 609, 794, 330, 456, 11327, 54625, 498, 330, 14105, 794, 5324, 2588, 794, 330, 60704, 11, 9822, 498, 330, 3928, 794, 330, 66, 41347, 32075, 128009, # assistant message + 128006, 23799, 4690, 128007, 271, # tool header + 1, 1313, 13, 15, 1, 128009, # tool message + 128006, 78191, 128007, 271, # assistant header + 791, 9499, 304, 12366, 374, 220, 1313, 13, 15, 12628, 62447, 13, 128009 # assistant message + ] + + expected_labels = [ + IGNORE_TOKEN_ID, # bos + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # system header + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # system date prompt + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # system message + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # user header + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # user message + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # assistant header + 5018, 609, 794, 330, 456, 11327, 54625, 498, 330, 14105, 794, 5324, 2588, 794, 330, 60704, 11, 9822, 498, 330, 3928, 794, 330, 66, 41347, 32075, 128009, # assistant message + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # tool header + IGNORE_TOKEN_ID, 1313, 13, 15, IGNORE_TOKEN_ID, 128009, # tool message + IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, IGNORE_TOKEN_ID, # assistant header + 791, 9499, 304, 12366, 374, 220, 1313, 13, 15, 12628, 62447, 13, 128009 # assistant message + ] + # fmt: on + + assert ( + input_ids == expected_input_ids + ), f"Input IDs mismatch: {input_ids} != {expected_input_ids}" + + assert ( + labels == expected_labels + ), f"Labels mismatch: {labels} != {expected_labels}" + + if __name__ == "__main__": unittest.main() diff --git a/tests/prompt_strategies/test_chat_templates_advanced.py b/tests/prompt_strategies/test_chat_templates_advanced.py index be8e3ccdf9..7d09b059cc 100644 --- a/tests/prompt_strategies/test_chat_templates_advanced.py +++ b/tests/prompt_strategies/test_chat_templates_advanced.py @@ -4,8 +4,12 @@ import logging import unittest +from copy import deepcopy +import pytest from datasets import Dataset +from tokenizers import AddedToken +from transformers import PreTrainedTokenizer from axolotl.prompt_strategies.chat_template import ( ChatTemplatePrompter, @@ -17,7 +21,30 @@ logging.basicConfig(level=logging.DEBUG) LOG = logging.getLogger("axolotl") - +PARAMETRIZE_KEYS = "tokenizer, chat_template, chat_template_jinja, eos_token" +PARAMETRIZE_PARAMS = [ + ("llama3_tokenizer", "llama3", None, None), + ("llama3_tokenizer", "chatml", None, "<|im_end|>"), + ( + "mistralv03_tokenizer", + "jinja", + "mistralv03_tokenizer_chat_template_jinja", + "[/INST]", + ), + ( + "gemma2_tokenizer", + "jinja", + "gemma2_tokenizer_chat_template_jinja", + "", + ), + ("phi35_tokenizer", "phi_35", None, "<|end|>"), +] + + +@pytest.mark.parametrize( + PARAMETRIZE_KEYS, + PARAMETRIZE_PARAMS, +) class TestChatTemplateConfigurations: """ Test class for various configurations of ChatTemplateStrategy. @@ -31,167 +58,318 @@ def find_sublist(full_list, sub_list): return index return -1 - def test_train_on_inputs_true(self, llama3_tokenizer, basic_dataset): + @staticmethod + def setup_tokenizer( + tokenizer_name, + chat_template, + chat_template_jinja=None, + eos_token=None, + request=None, + ) -> tuple[PreTrainedTokenizer, str]: + """ + Helper function to set up the tokenizer and chat template for the test. + """ + tokenizer = deepcopy(request.getfixturevalue(tokenizer_name)) + if chat_template == "jinja": + chat_template_jinja = request.getfixturevalue(chat_template_jinja) + if eos_token: + tokenizer.add_special_tokens( + { + "eos_token": AddedToken( + eos_token, rstrip=False, lstrip=False, normalized=False + ) + } + ) + if tokenizer.__class__.__name__ in ( + "LlamaTokenizerFast", + "CodeLlamaTokenizerFast", + ): + tokenizer.update_post_processor() + return tokenizer, chat_template_jinja + + def _should_skip_turn(self, tokenizer, turn, turn_idx, start_idx, end_idx): + """Helper method to determine if a turn should be skipped in testing. + This is used to skip system messages for Mistral as the template does not output them without more turns. + """ + if ( + turn_idx == 0 + and turn.get("from") in ["system", "context"] + and "mistral" in tokenizer.name_or_path.lower() + ): + assert ( + start_idx == -1 and end_idx == -1 + ), "Expected system message to be skipped" + return True + return False + + def test_train_on_inputs_true( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): LOG.info("Testing with train_on_inputs=True") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=True, sequence_len=512, roles_to_train=["assistant"], ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) + turns = strategy.get_conversation_thread(basic_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] - # Verify that assistant responses are labeled - assistant_responses = ["Hi there!", "I'm doing well, thank you!"] - for response in assistant_responses: - response_ids = llama3_tokenizer.encode(response, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, response_ids) - LOG.debug( - f"Assistant response '{response}' expected IDs: {response_ids}, found at: {start_idx}" + # Verify assistant responses are labeled + for i, turn in enumerate(basic_dataset[0]["conversations"]): + start_idx, end_idx = strategy.find_turn(turns=turns, turn_idx=i) + + if self._should_skip_turn(tokenizer, turn, i, start_idx, end_idx): + continue + + decoded_response = tokenizer.decode(input_ids[start_idx:end_idx]) + response = turn["value"] + + assert response in decoded_response, ( + f"Response {response} not found in index {start_idx}:{end_idx} " + f"decoded:{decoded_response}" ) - assert start_idx != -1, f"Could not find '{response}' in input_ids" + assert all( - label != IGNORE_TOKEN_ID - for label in labels[start_idx : start_idx + len(response_ids)] - ), f"Expected labels for assistant response '{response}' to be set, but got {labels[start_idx:start_idx+len(response_ids)]}" - - # Check the behavior of human inputs - human_inputs = ["Hello", "How are you?"] - for input_text in human_inputs: - input_ids = llama3_tokenizer.encode(input_text, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, input_ids) - labeled = all( - label != IGNORE_TOKEN_ID - for label in labels[start_idx : start_idx + len(input_ids)] - ) - LOG.debug( - f"Human input '{input_text}' is {'labeled' if labeled else 'not labeled'}, expected IDs: {input_ids}, found at: {start_idx}" - ) + label != IGNORE_TOKEN_ID for label in labels[start_idx:end_idx] + ), f"Expected labels for input '{response}' to be ignored, but got {labels[start_idx:end_idx]}" LOG.debug("Full labels: %s", labels) LOG.debug("Full input_ids: %s", input_ids) - def test_train_on_inputs_false(self, llama3_tokenizer, basic_dataset): - LOG.info("Testing with train_on_inputs=False") + def test_train_on_inputs_false( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): + LOG.info("Testing with train_on_inputs=False, on assistant only") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, roles_to_train=["assistant"], ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) + turns = strategy.get_conversation_thread(basic_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] - # Verify that only assistant responses are labeled - assistant_responses = ["Hi there!", "I'm doing well, thank you!"] - for response in assistant_responses: - response_ids = llama3_tokenizer.encode(response, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, response_ids) - LOG.debug( - f"Assistant response '{response}' expected IDs: {response_ids}, found at: {start_idx}" - ) - assert start_idx != -1, f"Could not find '{response}' in input_ids" - assert all( - label != IGNORE_TOKEN_ID - for label in labels[start_idx : start_idx + len(response_ids)] - ), f"Expected labels for assistant response '{response}' to be set, but got {labels[start_idx:start_idx+len(response_ids)]}" - - # Verify that human inputs are not labeled - human_inputs = ["Hello", "How are you?"] - for input_text in human_inputs: - input_ids = llama3_tokenizer.encode(input_text, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, input_ids) - LOG.debug( - f"Human input '{input_text}' expected IDs: {input_ids}, found at: {start_idx}" + # Process all turns and verify correct labeling based on role + for i, turn in enumerate(basic_dataset[0]["conversations"]): + start_idx, end_idx = strategy.find_turn(turns=turns, turn_idx=i) + + if self._should_skip_turn(tokenizer, turn, i, start_idx, end_idx): + continue + + decoded_response = tokenizer.decode(input_ids[start_idx:end_idx]) + response = turn["value"] + + assert response in decoded_response, ( + f"Response {response} not found in index {start_idx}:{end_idx} " + f"decoded:{decoded_response}" ) - assert start_idx != -1, f"Could not find '{input_text}' in input_ids" - assert all( - label == IGNORE_TOKEN_ID - for label in labels[start_idx : start_idx + len(input_ids)] - ), f"Expected labels for human input '{input_text}' to be IGNORE_TOKEN_ID, but got {labels[start_idx:start_idx+len(input_ids)]}" - def test_roles_to_train_assistant_only(self, llama3_tokenizer, basic_dataset): - LOG.info("Testing roles_to_train with assistant only") + # Verify that assistant responses are labeled and other inputs are not + is_assistant = turn["from"] == "assistant" + if is_assistant: + assert all( + label != IGNORE_TOKEN_ID for label in labels[start_idx:end_idx] + ), f"Expected labels for assistant response '{response}' to be set, but got {labels[start_idx:end_idx]}" + else: + assert all( + label == IGNORE_TOKEN_ID for label in labels[start_idx:end_idx] + ), f"Expected labels for human input '{response}' to be IGNORE_TOKEN_ID, but got {labels[start_idx:end_idx]}" + + def test_roles_to_train_human_assistant_only( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): + LOG.info("Testing roles_to_train with human assistant only") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, - roles_to_train=["assistant"], + roles_to_train=["assistant", "human"], ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] - # Verify that only assistant responses are labeled - assistant_responses = ["Hi there!", "I'm doing well, thank you!"] - for response in assistant_responses: - response_ids = llama3_tokenizer.encode(response, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, response_ids) - LOG.debug( - f"Assistant response '{response}' expected IDs: {response_ids}, found at: {start_idx}" + strategy.messages = "conversations" + res = strategy.tokenize_prompt(basic_dataset[0]) + turns = strategy.get_conversation_thread(basic_dataset[0]) + labels = res["labels"] + input_ids = res["input_ids"] + + # Process all turns and verify correct labeling based on role + for i, turn in enumerate(basic_dataset[0]["conversations"]): + start_idx, end_idx = strategy.find_turn(turns=turns, turn_idx=i) + + if self._should_skip_turn(tokenizer, turn, i, start_idx, end_idx): + continue + + decoded_response = tokenizer.decode(input_ids[start_idx:end_idx]) + response = turn["value"] + + assert response in decoded_response, ( + f"Response {response} not found in index {start_idx}:{end_idx} " + f"decoded:{decoded_response}" ) - assert all( - label != IGNORE_TOKEN_ID - for label in labels[start_idx : start_idx + len(response_ids)] - ), f"Expected labels for assistant response '{response}' to be set, but got {labels[start_idx:start_idx+len(response_ids)]}" - def test_roles_to_train_all(self, llama3_tokenizer, basic_dataset): + # Verify that non-system responses are labeled and system are not + should_be_labelled = turn["from"] != "system" + if should_be_labelled: + assert all( + label != IGNORE_TOKEN_ID for label in labels[start_idx:end_idx] + ), f"Expected labels for assistant response '{response}' to be set, but got {labels[start_idx:end_idx]}" + else: + assert all( + label == IGNORE_TOKEN_ID for label in labels[start_idx:end_idx] + ), f"Expected labels for human input '{response}' to be IGNORE_TOKEN_ID, but got {labels[start_idx:end_idx]}" + + def test_roles_to_train_all( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): LOG.info("Testing roles_to_train with all roles") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=True, sequence_len=512, roles_to_train=["human", "assistant"], ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) + turns = strategy.get_conversation_thread(basic_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] # Verify that all responses are labeled (except for special tokens) - all_responses = [ - "Hello", - "Hi there!", - "How are you?", - "I'm doing well, thank you!", - ] - for response in all_responses: - response_ids = llama3_tokenizer.encode(response, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, response_ids) - LOG.debug( - f"Response '{response}' expected IDs: {response_ids}, found at: {start_idx}" - ) - assert all( - label != IGNORE_TOKEN_ID - for label in labels[start_idx : start_idx + len(response_ids)] - ), f"Expected labels for response '{response}' to be set, but got {labels[start_idx:start_idx+len(response_ids)]}" + for i, turn in enumerate(basic_dataset[0]["conversations"]): + response = turn["value"] + + start_idx, end_idx = strategy.find_turn(turns=turns, turn_idx=i) - def test_empty_roles_to_train(self, llama3_tokenizer, basic_dataset): + if self._should_skip_turn(tokenizer, turn, i, start_idx, end_idx): + continue + + decoded_response = tokenizer.decode(input_ids[start_idx:end_idx]) + assert ( + response in decoded_response + ), f"Response {response} not found in index {start_idx}:{end_idx} decoded:{decoded_response}" + + assert all( + label != IGNORE_TOKEN_ID for label in labels[start_idx:end_idx] + ), f"Expected labels for response '{response}' to be set, but got {labels[start_idx:end_idx]}" + + def test_empty_roles_to_train( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): LOG.info("Testing with empty roles_to_train") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, roles_to_train=[], train_on_eos="none", # Add this line ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) labels = res["labels"] @@ -201,23 +379,42 @@ def test_empty_roles_to_train(self, llama3_tokenizer, basic_dataset): label == IGNORE_TOKEN_ID for label in labels ), "Expected all labels to be IGNORE_TOKEN_ID when roles_to_train is empty" - def test_train_on_eos_all(self, llama3_tokenizer, basic_dataset): + def test_train_on_eos_all( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): LOG.info("Testing with train_on_eos='all'") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, roles_to_train=["assistant"], train_on_eos="all", ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] - eos_token_id = llama3_tokenizer.eos_token_id + eos_token_id = tokenizer.eos_token_id eos_indices = [ i for i, token_id in enumerate(input_ids) if token_id == eos_token_id ] @@ -228,73 +425,122 @@ def test_train_on_eos_all(self, llama3_tokenizer, basic_dataset): labels[eos_idx] != IGNORE_TOKEN_ID ), f"Expected EOS token at index {eos_idx} to be labeled" - def test_train_on_eos_turn(self, llama3_tokenizer, basic_dataset): + def test_train_on_eos_turn( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): LOG.info("Testing with train_on_eos='turn'") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, roles_to_train=["assistant"], train_on_eos="turn", ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) + turns = strategy.get_conversation_thread(basic_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] - eos_token_id = llama3_tokenizer.eos_token_id - assistant_responses = ["Hi there!", "I'm doing well, thank you!"] + eos_token_id = tokenizer.eos_token_id + # Process all turns and verify EOS token labeling + for i, turn in enumerate(basic_dataset[0]["conversations"]): + start_idx, end_idx = strategy.find_turn(turns=turns, turn_idx=i) + + if self._should_skip_turn(tokenizer, turn, i, start_idx, end_idx): + continue + + decoded_response = tokenizer.decode(input_ids[start_idx:end_idx]) + response = turn["value"] - for response in assistant_responses: - response_ids = llama3_tokenizer.encode(response, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, response_ids) - assert start_idx != -1, f"Could not find '{response}' in input_ids" + assert response in decoded_response, ( + f"Response {response} not found in index {start_idx}:{end_idx} " + f"decoded:{decoded_response}" + ) - eos_idx = start_idx + len(response_ids) + # Find the EOS token after this turn + eos_idx = end_idx while eos_idx < len(input_ids) and input_ids[eos_idx] != eos_token_id: eos_idx += 1 assert eos_idx < len( input_ids ), f"Could not find EOS token after '{response}'" - assert ( - labels[eos_idx] != IGNORE_TOKEN_ID - ), f"Expected EOS token after assistant response '{response}' to be labeled" - - # Check that EOS tokens after human inputs are not labeled - human_inputs = ["Hello", "How are you?"] - for input_text in human_inputs: - input_ids = llama3_tokenizer.encode(input_text, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, input_ids) - assert start_idx != -1, f"Could not find '{input_text}' in input_ids" - eos_idx = start_idx + len(input_ids) - while eos_idx < len(input_ids) and input_ids[eos_idx] != eos_token_id: - eos_idx += 1 + LOG.debug( + f"Turn {i}: role={turn['from']}, content='{turn['value']}', start_idx={start_idx}, end_idx={end_idx}, eos_idx={eos_idx}" + ) - assert ( - labels[eos_idx] == IGNORE_TOKEN_ID - ), f"Expected EOS token after human input '{input_text}' to not be labeled" + LOG.debug( + f"Labels for turn {i}: {labels[start_idx:end_idx]}, EOS label: {labels[eos_idx]}" + ) - def test_train_on_eos_last(self, llama3_tokenizer, basic_dataset): + # Verify EOS token labeling based on role + is_assistant = turn["from"] == "assistant" + if is_assistant: + assert ( + labels[eos_idx] != IGNORE_TOKEN_ID + ), f"Expected EOS token after assistant response '{response}' to be labeled" + else: + assert ( + labels[eos_idx] == IGNORE_TOKEN_ID + ), f"Expected EOS token after non-assistant input '{response}' to not be labeled" + + def test_train_on_eos_last( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): LOG.info("Testing with train_on_eos='last'") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, roles_to_train=["assistant"], train_on_eos="last", ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] - eos_token_id = llama3_tokenizer.eos_token_id + eos_token_id = tokenizer.eos_token_id eos_indices = [ i for i, token_id in enumerate(input_ids) if token_id == eos_token_id ] @@ -311,23 +557,42 @@ def test_train_on_eos_last(self, llama3_tokenizer, basic_dataset): labels[last_eos_idx] != IGNORE_TOKEN_ID ), f"Expected last EOS token at index {last_eos_idx} to be labeled" - def test_train_on_eos_none(self, llama3_tokenizer, basic_dataset): + def test_train_on_eos_none( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): LOG.info("Testing with train_on_eos='none'") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, chat_template=get_chat_template("llama3") + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, roles_to_train=["assistant"], train_on_eos="none", ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] - eos_token_id = llama3_tokenizer.eos_token_id + eos_token_id = tokenizer.eos_token_id eos_indices = [ i for i, token_id in enumerate(input_ids) if token_id == eos_token_id ] @@ -338,43 +603,75 @@ def test_train_on_eos_none(self, llama3_tokenizer, basic_dataset): labels[eos_idx] == IGNORE_TOKEN_ID ), f"Expected EOS token at index {eos_idx} to not be labeled" - def test_drop_system_message(self, llama3_tokenizer, basic_dataset): + def test_drop_system_message( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + basic_dataset, + request, + ): LOG.info("Testing with drop_system_message=True") + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, - chat_template=get_chat_template("llama3"), + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), drop_system_message=True, + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, roles_to_train=["assistant"], ) + strategy.messages = "conversations" res = strategy.tokenize_prompt(basic_dataset[0]) input_ids = res["input_ids"] # Check if system message is not present in input_ids system_message = "You are an AI assistant." - system_ids = llama3_tokenizer.encode(system_message, add_special_tokens=False) + decoded_message = tokenizer.decode(input_ids) assert ( - self.find_sublist(input_ids, system_ids) == -1 + system_message not in decoded_message ), "Expected system message to be dropped" - def test_custom_roles(self, llama3_tokenizer): + def test_custom_roles( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + request, + ): LOG.info("Testing with custom roles mapping") custom_roles = { "user": ["human", "user"], "assistant": ["ai", "assistant"], "system": ["context"], } + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, - chat_template=get_chat_template("llama3"), + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), roles=custom_roles, + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, roles_to_train=["ai"], @@ -389,46 +686,65 @@ def test_custom_roles(self, llama3_tokenizer): {"from": "ai", "value": "I'm doing well, thank you!"}, ] - modified_dataset = Dataset.from_dict( - {"conversations": [modified_conversations]} - ) + modified_dataset = Dataset.from_dict({"messages": [modified_conversations]}) res = strategy.tokenize_prompt(modified_dataset[0]) + turns = strategy.get_conversation_thread(modified_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] - # Check if AI responses are labeled correctly - ai_responses = ["Hi there!", "I'm doing well, thank you!"] - for response in ai_responses: - response_ids = llama3_tokenizer.encode(response, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, response_ids) - assert start_idx != -1, f"Could not find response '{response}' in input_ids" - assert all( - label != IGNORE_TOKEN_ID - for label in labels[start_idx : start_idx + len(response_ids)] - ), f"Expected labels for AI response '{response}' to be set" - - # Check if human messages are not labeled - human_messages = ["Hello", "How are you?"] - for message in human_messages: - message_ids = llama3_tokenizer.encode(message, add_special_tokens=False) - start_idx = self.find_sublist(input_ids, message_ids) - assert start_idx != -1, f"Could not find message '{message}' in input_ids" - assert all( - label == IGNORE_TOKEN_ID - for label in labels[start_idx : start_idx + len(message_ids)] - ), f"Expected labels for human message '{message}' to be IGNORE_TOKEN_ID" + # Process all turns and verify labeling + for i, turn in enumerate(modified_dataset[0]["messages"]): + start_idx, end_idx = strategy.find_turn(turns=turns, turn_idx=i) + + if self._should_skip_turn(tokenizer, turn, i, start_idx, end_idx): + continue + + decoded_response = tokenizer.decode(input_ids[start_idx:end_idx]) + response = turn["value"] - def test_message_field_training(self, llama3_tokenizer): + assert response in decoded_response, ( + f"Response {response} not found in index {start_idx}:{end_idx} " + f"decoded:{decoded_response}" + ) + + # Check if responses are labeled correctly based on role + is_ai = turn["from"] == "ai" + if is_ai: + assert all( + label != IGNORE_TOKEN_ID for label in labels[start_idx:end_idx] + ), f"Expected labels for AI response '{response}' to be set" + else: + assert all( + label == IGNORE_TOKEN_ID for label in labels[start_idx:end_idx] + ), f"Expected labels for non-AI message '{response}' to be IGNORE_TOKEN_ID" + + def test_message_field_training( + self, + tokenizer, + chat_template, + chat_template_jinja, + eos_token, + request, + ): LOG.info("Testing with message_field_training") + + tokenizer, chat_template_jinja = self.setup_tokenizer( + tokenizer, chat_template, chat_template_jinja, eos_token, request + ) + strategy = ChatTemplateStrategy( ChatTemplatePrompter( - llama3_tokenizer, - chat_template=get_chat_template("llama3"), + tokenizer, + chat_template=get_chat_template( + chat_template, jinja_template=chat_template_jinja + ), message_field_training="train", message_field_training_detail="train_detail", + message_field_role="from", + message_field_content="value", ), - tokenizer=llama3_tokenizer, + tokenizer=tokenizer, train_on_inputs=False, sequence_len=512, roles_to_train=[], @@ -457,62 +773,65 @@ def test_message_field_training(self, llama3_tokenizer): {"from": "assistant", "value": "Hi there!", "train": True}, ] - modified_dataset = Dataset.from_dict({"conversations": [modified_conversation]}) + modified_dataset = Dataset.from_dict({"messages": [modified_conversation]}) res = strategy.tokenize_prompt(modified_dataset[0]) + turns = strategy.get_conversation_thread(modified_dataset[0]) labels = res["labels"] input_ids = res["input_ids"] - # Function to find all occurrences of a sublist - def find_all_sublists(full_list, sub_list): - indices = [] - for index in range(len(full_list) - len(sub_list) + 1): - if full_list[index : index + len(sub_list)] == sub_list: - indices.append(index) - return indices - - # Keep track of which occurrences we've processed - processed_occurrences = {} - # Check if messages are labeled correctly based on train or train_detail - for i, turn in enumerate(modified_conversation): - turn_tokens = llama3_tokenizer.encode( - turn["value"], add_special_tokens=False - ) - occurrences = find_all_sublists(input_ids, turn_tokens) - turn_key = turn["value"] - if turn_key not in processed_occurrences: - processed_occurrences[turn_key] = 0 - current_occurrence = processed_occurrences[turn_key] + def verify_labels(labels_span, should_train, context_message): + """Helper to verify if a span of labels matches expected training state""" + if should_train: + assert all( + label != IGNORE_TOKEN_ID for label in labels_span + ), f"Expected all labels for {context_message} to be set, but got {labels_span}" + else: + assert all( + label == IGNORE_TOKEN_ID for label in labels_span + ), f"Expected all labels for {context_message} to be {IGNORE_TOKEN_ID}, but got {labels_span}" - if current_occurrence >= len(occurrences): - assert ( - False - ), f"Not enough occurrences found for message: {turn['value']}" + # Process all turns and verify labeling + for i, turn in enumerate(modified_dataset[0]["messages"]): + start_idx, end_idx = strategy.find_turn(turns=turns, turn_idx=i) + + if self._should_skip_turn(tokenizer, turn, i, start_idx, end_idx): + continue + + decoded_response = tokenizer.decode(input_ids[start_idx:end_idx]) + response = turn["value"] - start_idx = occurrences[current_occurrence] - processed_occurrences[turn_key] += 1 - end_idx = start_idx + len(turn_tokens) + assert response in decoded_response, ( + f"Response {response} not found in index {start_idx}:{end_idx} " + f"decoded:{decoded_response}" + ) LOG.debug( - f"Processing turn {i}: role={turn['from']}, content='{turn['value']}', start_idx={start_idx}, end_idx={end_idx}" + f"Processing turn {i}: role={turn['from']}, content='{turn['value']}', " + f"start_idx={start_idx}, end_idx={end_idx}" ) - if "train_detail" in turn: - # Get token offsets - tokenized_output = llama3_tokenizer( + if turn.get("train_detail", None) is not None: + # Handle detailed token-level training control + tokenized_output = tokenizer( turn["value"], return_offsets_mapping=True, add_special_tokens=False ) + assert tokenized_output["input_ids"] == input_ids[start_idx:end_idx], ( + f"Tokenized input mismatch for turn: {turn['value']}\n" + f"Expected: {input_ids[start_idx:end_idx]}\nActual: {tokenized_output['input_ids']}\n" + f"This will likely be a mismatch between template content and encoded content" + ) + token_offsets = tokenized_output["offset_mapping"] - # Adjust token offsets as done in the implementation - for i in range(len(token_offsets) - 1): - token_offsets[i] = ( - token_offsets[i][0], - token_offsets[i + 1][0] - 1, + # Adjust token offsets + for j in range(len(token_offsets) - 1): + token_offsets[j] = ( + token_offsets[j][0], + token_offsets[j + 1][0] - 1, ) token_offsets[-1] = (token_offsets[-1][0], len(turn["value"]) - 1) - # Adjust train_details adjusted_train_details = strategy.prompter.adjust_train_details( turn["train_detail"], token_offsets ) @@ -520,12 +839,20 @@ def find_all_sublists(full_list, sub_list): LOG.debug(f"Original train_details: {turn['train_detail']}") LOG.debug(f"Adjusted train_details: {adjusted_train_details}") - # Handle train_detail - token_offsets = strategy.prompter.get_offsets_for_train_detail( + # Get and verify token offsets + turn_tokens = input_ids[start_idx:end_idx] + token_offsets_unmasked = strategy.prompter.get_offsets_for_train_detail( text=turn["value"], train_details=adjusted_train_details, mask_untrainable=False, ) + + for i, offset in enumerate(token_offsets_unmasked): + assert token_offsets[i][0] == offset, ( + f"Token start offsets mismatch for turn: {turn['value']}\n" + f"Expected: {token_offsets[i][0]}\nActual: {offset}" + ) + token_offsets_masked = strategy.prompter.get_offsets_for_train_detail( text=turn["value"], train_details=adjusted_train_details, @@ -533,6 +860,7 @@ def find_all_sublists(full_list, sub_list): ) LOG.debug(f"Token offsets: {token_offsets_masked}") + # Verify expected labels against actual labels expected_labels = [IGNORE_TOKEN_ID] * len(turn_tokens) for i, offset in enumerate(token_offsets_masked): if offset != IGNORE_TOKEN_ID: @@ -544,17 +872,17 @@ def find_all_sublists(full_list, sub_list): actual_labels == expected_labels ), f"Labels mismatch for turn: {turn['value']}\nExpected: {expected_labels}\nActual: {actual_labels}" + # Verify each detail section for detail in adjusted_train_details: - # Find the token indices that correspond to the character offsets detail_start = start_idx + next( - i - for i, offset in enumerate(token_offsets) + j + for j, offset in enumerate(token_offsets_unmasked) if offset >= detail["begin_offset"] ) detail_end = start_idx + next( ( - i - for i, offset in enumerate(token_offsets) + j + for j, offset in enumerate(token_offsets_unmasked) if offset > detail["end_offset"] ), len(token_offsets), @@ -564,70 +892,21 @@ def find_all_sublists(full_list, sub_list): detail["begin_offset"] : detail["end_offset"] + 1 ] detail_labels = labels[detail_start:detail_end] - detail_input_ids = input_ids[detail_start:detail_end] - LOG.debug( - f"Detail: '{detail_text}', Start: {detail_start}, End: {detail_end}" - ) - LOG.debug(f"Detail input_ids: {detail_input_ids}") - LOG.debug(f"Detail labels: {detail_labels}") - LOG.debug( - f"Decoded detail: {llama3_tokenizer.decode(detail_input_ids)}" - ) - LOG.debug( - f"Token offsets for this detail: {token_offsets[detail_start-start_idx:detail_end-start_idx]}" + context = ( + f"detail (ind {detail_start}:{detail_end}): '{detail_text}'\n" + f"decoded: '{tokenizer.decode(input_ids[detail_start:detail_end])}')" ) - - if detail["train"]: - assert all( - label != IGNORE_TOKEN_ID for label in detail_labels - ), ( - f"Expected labels for trainable detail '{detail_text}' to be set, but some were IGNORE_TOKEN_ID. " - f"Labels({detail_start}:{detail_end}): {detail_labels}, " - f"InputIDs: {detail_input_ids}, " - f"Decoded: '{llama3_tokenizer.decode(detail_input_ids)}'" - ) - else: - assert all( - label == IGNORE_TOKEN_ID for label in detail_labels - ), ( - f"Expected all labels for non-trainable detail '{detail_text}' to be IGNORE_TOKEN_ID, but some were not. " - f"Labels({detail_start}:{detail_end}): {detail_labels}, " - f"InputIDs: {detail_input_ids}, " - f"Decoded: '{llama3_tokenizer.decode(detail_input_ids)}'" - ) + verify_labels(detail_labels, detail["train"], context) else: + # Handle regular turn-level training control should_train = turn.get("train", False) turn_labels = labels[start_idx:end_idx] - - LOG.debug(f"Should train: {should_train}") - LOG.debug(f"Turn indices: start={start_idx}, end={end_idx}") - LOG.debug(f"Turn labels: {turn_labels}") - LOG.debug(f"Turn input IDs: {input_ids[start_idx:end_idx]}") - LOG.debug( - f"Decoded turn: {llama3_tokenizer.decode(input_ids[start_idx:end_idx])}" - ) - - if should_train: - assert all(label != IGNORE_TOKEN_ID for label in turn_labels), ( - f"Expected all labels for '{turn['value']}' to be set\n" - f"Labels({start_idx}:{end_idx}): {turn_labels}, " - f"InputIDs: {input_ids[start_idx:end_idx]}, " - f"Decoded: '{llama3_tokenizer.decode(input_ids[start_idx:end_idx])}'" - ) - else: - assert all(label == IGNORE_TOKEN_ID for label in turn_labels), ( - f"Expected all labels for '{turn['value']}' to be IGNORE_TOKEN_ID\n" - f"Labels({start_idx}:{end_idx}): {turn_labels}, " - f"InputIDs: {input_ids[start_idx:end_idx]}, " - f"Decoded: '{llama3_tokenizer.decode(input_ids[start_idx:end_idx])}'" - ) - - LOG.debug( - f"Processed turn: {turn['from']}, content: '{turn['value']}', " - f"start_idx: {start_idx}, end_idx: {end_idx}, " - f"labels: {labels[start_idx:end_idx]}" + context = ( + f"turn (ind {start_idx}:{end_idx}): '{turn['value']}'\n" + f"decoded: '{decoded_response}')" ) + verify_labels(turn_labels, should_train, context) LOG.debug(f"Final labels: {labels}") LOG.debug(f"Final input_ids: {input_ids}")