-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathdata_utils.py
99 lines (83 loc) · 3.95 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
Author: Moustafa Alzantot (malzantot@ucla.edu)
All rights reserved.
"""
import os
#import nltk
import re
from collections import Counter
#from nltk.corpus import stopwords
from keras.preprocessing.text import Tokenizer
import pickle as pickle
class IMDBDataset(object):
def __init__(self, path='aclImdb', max_vocab_size=None):
self.path = path
self.train_path = path + '/train'
self.test_path = path + '/test'
self.vocab_path = path + '/imdb.vocab'
self.max_vocab_size = max_vocab_size
self._read_vocab()
train_text, self.train_y = self.read_text(self.train_path)
test_text, self.test_y = self.read_text(self.test_path)
self.train_text = train_text
self.test_text = test_text
print('tokenizing...')
# Tokenized text of training data
self.tokenizer = Tokenizer()
#nlp = spacy.load('en')
# train_text = [nltk.word_tokenize(doc) for doc in train_text]
# test_text = [nltk.word_tokenize(doc) for doc in test_text]
#train_text = [[w.string.strip() for w in nlp(doc)] for doc in train_text]
#test_text = [[w.string.strip() for w in nlp(doc)] for doc in test_text]
self.tokenizer.fit_on_texts(self.train_text)
if max_vocab_size is None:
max_vocab_size = len(self.tokenizer.word_index) + 1
#sorted_words = sorted([x for x in self.tokenizer.word_counts])
#self.top_words = sorted_words[:max_vocab_size-1]
#self.other_words = sorted_words[max_vocab_size-1:]
self.dict = dict()
self.train_seqs = self.tokenizer.texts_to_sequences(self.train_text)
self.train_seqs2 = [[w if w < max_vocab_size else max_vocab_size for w in doc] for doc in self.train_seqs]
self.test_seqs = self.tokenizer.texts_to_sequences(self.test_text)
self.test_seqs2 = [[w if w < max_vocab_size else max_vocab_size for w in doc] for doc in self.test_seqs]
self.dict['UNK'] = max_vocab_size
self.inv_dict = dict()
self.inv_dict[max_vocab_size] = 'UNK'
self.full_dict = dict()
self.inv_full_dict = dict()
for word, idx in self.tokenizer.word_index.items():
if idx < max_vocab_size:
self.inv_dict[idx] = word
self.dict[word] = idx
self.full_dict[word] = idx
self.inv_full_dict[idx] = word
print('Dataset built !')
def save(self, path='imdb'):
with open(path + '_train_set.pickle', 'wb') as f:
pickle.dump((self.train_text, self.train_seqs, self.train_y) , f)
with open(path + '_test_set.pickle', 'wb') as f:
pickle.dump((self.test_text, self.test_seqs, self.test_y) , f)
with open(path + '_dictionary.pickle', 'wb') as f:
pickle.dump((self.dict, self.inv_dict) , f)
def _read_vocab(self):
with open(self.vocab_path, 'r') as f:
vocab_words = f.read().split('\n')
self.vocab = dict([(w,i) for i, w in enumerate(vocab_words)])
self.reverse_vocab = dict([(i,w) for w,i in self.vocab.items()])
def read_text(self, path):
""" Returns a list of text documents and a list of their labels
(pos = +1, neg = 0) """
pos_list = []
neg_list = []
pos_path = path + '/pos'
neg_path = path + '/neg'
pos_files = [pos_path + '/' + x for x in os.listdir(pos_path) if x.endswith('.txt')]
neg_files = [neg_path + '/' + x for x in os.listdir(neg_path) if x.endswith('.txt')]
pos_list = [open(x, 'r').read().lower() for x in pos_files]
neg_list = [open(x, 'r').read().lower() for x in neg_files]
data_list = pos_list + neg_list
labels_list = [1]*len(pos_list) + [0]*len(neg_list)
return data_list, labels_list
def build_text(self, text_seq):
text_words = [self.inv_full_dict[x] for x in text_seq]
return ' '.join(text_words)