-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
125 lines (102 loc) · 5.11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import torch
from tensorboardX import SummaryWriter
from tqdm import tqdm
from agent import PPOAgent
from arguments import parse_args
from environment import MultiprocessEnvironment
from experience import ExperienceStorage
from policy import RecurrentPolicy
MAX_X = 3161
def train(args):
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
envs = MultiprocessEnvironment.create_mario_env(num_envs=args.jobs,
world=args.world,
stage=args.stage)
actor_critic = RecurrentPolicy(state_frame_channels=envs.observation_shape[0],
action_space_size=envs.action_space_size,
hidden_layer_size=args.hidden_size,
prev_actions_out_size=args.prev_actions_hidden_size,
recurrent_hidden_size=args.recurrent_hidden_size,
device=device)
experience = ExperienceStorage(num_steps=args.steps_per_update,
num_envs=args.jobs,
observation_shape=envs.observation_shape,
recurrent_hidden_size=args.recurrent_hidden_size,
device=device)
initial_observations = envs.reset()
experience.insert_initial_observations(initial_observations)
tb_writer = SummaryWriter()
num_updates = args.steps // (args.jobs * args.steps_per_update)
agent = PPOAgent(actor_critic,
lr=args.lr,
lr_lambda=lambda step: 1 - (step / float(num_updates)),
policy_loss_coef=args.policy_loss_coef,
value_loss_coef=args.value_loss_coef,
entropy_loss_coef=args.entropy_loss_coef,
max_grad_norm=args.max_grad_norm,
clip_threshold=args.ppo_clip_threshold,
epochs=args.ppo_epochs,
minibatches=args.ppo_minibatches)
for update_step in tqdm(range(num_updates)):
episode_rewards = []
for step in range(args.steps_per_update):
with torch.no_grad():
actor_input = experience.get_actor_input(step)
(values,
actions,
action_log_probs,
_, # Action disribution entropy is not needed.
recurrent_hidden_states) = actor_critic.act(*actor_input)
observations, rewards, done_values, info_dicts = envs.step(actions)
masks = 1 - done_values
experience.insert(observations,
actions,
action_log_probs,
rewards,
values,
masks,
recurrent_hidden_states)
for done, info in zip(done_values, info_dicts):
if done:
level_completed_percentage = info['x_pos'] / MAX_X
episode_rewards.append(level_completed_percentage)
with torch.no_grad():
critic_input = experience.get_critic_input()
next_value = actor_critic.value(*critic_input)
experience.compute_gae_returns(next_value,
gamma=args.discount,
gae_lambda=args.gae_lambda)
losses = agent.update(experience)
if episode_rewards:
with torch.no_grad():
cumulative_reward = experience.rewards.sum((0, 2))
mean_reward = cumulative_reward.mean()
std_reward = cumulative_reward.std()
tb_writer.add_scalar('mario/lr', agent.current_lr(), update_step)
tb_writer.add_scalars('mario/level_progress', {
'min': np.min(episode_rewards),
'max': np.max(episode_rewards),
'mean': np.mean(episode_rewards),
'median': np.median(episode_rewards),
}, update_step)
tb_writer.add_scalars('mario/reward', {'mean': mean_reward,
'std': std_reward}, update_step)
tb_writer.add_scalars('mario/loss', {
'policy': losses['policy_loss'],
'value': losses['value_loss'],
}, update_step)
tb_writer.add_scalar('mario/action_dist_entropy',
losses['action_dist_entropy'],
update_step)
if np.min(episode_rewards) == 1.0:
model_path = 'models/super_model_{}.bin'.format(update_step + 1)
torch.save(actor_critic.state_dict(), model_path)
save_model = (update_step % args.save_interval) == (args.save_interval - 1)
if save_model:
model_path = 'models/model_{}.bin'.format(update_step + 1)
torch.save(actor_critic.state_dict(), model_path)
tb_writer.close()
if __name__ == '__main__':
args = parse_args()
train(args)