-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
66 lines (53 loc) · 1.66 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import numpy as np
import cv2
import matplotlib.pyplot as plt
def variable_blur(im, sigma, ksize=3):
"""Blur an image with a variable Gaussian kernel.
Parameters
----------
im: numpy array, (h, w)
sigma: numpy array, (h, w)
ksize: int
The box blur kernel size. Should be an odd number >= 3.
Returns
-------
im_blurred: numpy array, (h, w)
"""
variance = box_blur_variance(ksize)
# Number of times to blur per-pixel
num_box_blurs = 2 * sigma**2 / variance
# Number of rounds of blurring
max_blurs = int(np.ceil(np.max(num_box_blurs))) * 3
# Approximate blurring a variable number of times
blur_weight = num_box_blurs / max_blurs
current_im = im
for i in range(max_blurs):
next_im = cv2.blur(current_im, (ksize, ksize))
current_im = next_im * blur_weight + current_im * (1 - blur_weight)
return current_im
def box_blur_variance(ksize):
x = np.arange(ksize) - ksize // 2
x, y = np.meshgrid(x, x)
return np.mean(x**2 + y**2)
im = np.random.rand(400, 300)
sigma = 3
# Variable
x = np.linspace(0, 1, im.shape[1])
y = np.linspace(0, 1, im.shape[0])
x, y = np.meshgrid(x, y)
print(f"Shape X = {x.shape}, Shape Y = {y.shape}")
sigma_arr = sigma * (x + y)
print(sigma_arr)
im_variable = variable_blur(im, sigma_arr)
# Gaussian
ksize = sigma * 8 + 1
im_gauss = cv2.GaussianBlur(im, (ksize, ksize), sigma)
# Gaussian replica
sigma_arr = np.full_like(im, sigma)
im_approx = variable_blur(im, sigma_arr)
f, axxarr = plt.subplots(1, 2)
f.set_figwidth(16)
f.set_figheight(10)
axxarr[0].imshow(im, cmap="gray")
axxarr[1].imshow(im_variable, cmap="gray")
plt.show()