-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdaily_btc.sql
497 lines (467 loc) · 16 KB
/
daily_btc.sql
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
--inspect the data table
SELECT * FROM trading.daily_btc
LIMIT 5;
/*Result:
|market_date |open_price |high_price |low_price |close_price |adjusted_close_price|volume |
|------------------------|------------|------------|------------|------------|--------------------|------------|
|2014-09-17T00:00:00.000Z|465.864014 |468.174011 |452.421997 |457.334015 |457.334015 |21056800 |
|2014-09-18T00:00:00.000Z|456.859985 |456.859985 |413.104004 |424.440002 |424.440002 |34483200 |
|2014-09-19T00:00:00.000Z|424.102997 |427.834991 |384.532013 |394.795990 |394.795990 |37919700 |
|2014-09-20T00:00:00.000Z|394.673004 |423.295990 |389.882996 |408.903992 |408.903992 |36863600 |
|2014-09-21T00:00:00.000Z|408.084991 |412.425995 |393.181000 |398.821014 |398.821014 |26580100 |
*/
--1. Data Exploration
--a. Identify Null Rows
SELECT *
FROM trading.daily_btc
WHERE (
open_price + high_price + low_price +
close_price + adjusted_close_price + volume
) IS NULL;
--OR
SELECT *
FROM trading.daily_btc
WHERE
market_date IS NULL
OR open_price IS NULL
OR high_price IS NULL
OR low_price IS NULL
OR close_price IS NULL
OR adjusted_close_price IS NULL
OR volume IS NULL;
/* Result:
|market_date |open_price |high_price |low_price |close_price |adjusted_close_price|volume |
|------------------------|------------|------------|------------|------------|--------------------|------------|
|2020-04-17T00:00:00.000Z|null |null |null |null |null |null |
|2020-10-09T00:00:00.000Z|null |null |null |null |null |null |
|2020-10-12T00:00:00.000Z|null |null |null |null |null |null |
|2020-10-13T00:00:00.000Z|null |null |null |null |null |null |
*/
--b. Filling & Update Null Values
WITH april_17_data AS (
SELECT
market_date,
open_price,
LAG(open_price) OVER (ORDER BY market_date) AS lag_open_price
FROM trading.daily_btc
WHERE market_date BETWEEN ('2020-04-17'::DATE - 1) AND ('2020-04-17'::DATE + 1)
)
SELECT
market_date,
open_price,
lag_open_price,
COALESCE(open_price, lag_open_price) AS coalesce_open_price
FROM april_17_data;
/*Result:
|market_date |open_price |lag_open_price|coalesce_open_price|
|------------------------|------------|--------------|-------------------|
|2020-04-16T00:00:00.000Z|6640.454102 |null |6640.454102 |
|2020-04-17T00:00:00.000Z|null |6640.454102 |6640.454102 |
|2020-04-18T00:00:00.000Z|7092.291504 |null |7092.291504 |
*/
--c. Update Tables
DROP TABLE IF EXISTS updated_daily_btc;
CREATE TEMP TABLE updated_daily_btc AS
SELECT
market_date,
COALESCE(
open_price,
LAG(open_price, 1) OVER (ORDER BY market_date),
LAG(open_price, 2) OVER (ORDER BY market_date)
) AS open_price,
COALESCE(
high_price,
LAG(high_price, 1) OVER (ORDER BY market_date),
LAG(high_price, 2) OVER (ORDER BY market_date)
) AS high_price,
COALESCE(
low_price,
LAG(low_price, 1) OVER (ORDER BY market_date),
LAG(low_price, 2) OVER (ORDER BY market_date)
) AS low_price,
COALESCE(
close_price,
LAG(close_price, 1) OVER (ORDER BY market_date),
LAG(close_price, 2) OVER (ORDER BY market_date)
) AS close_price,
COALESCE(
adjusted_close_price,
LAG(adjusted_close_price, 1) OVER (ORDER BY market_date),
LAG(adjusted_close_price, 2) OVER (ORDER BY market_date)
) AS adjusted_close_price,
COALESCE(
volume,
LAG(volume, 1) OVER (ORDER BY market_date),
LAG(volume, 2) OVER (ORDER BY market_date)
) AS volume
FROM trading.daily_btc;
SELECT *
FROM updated_daily_btc
WHERE market_date IN (
'2020-04-17',
'2020-10-09',
'2020-10-12',
'2020-10-13'
);
/*Result:
|market_date |open_price |high_price |low_price |close_price |adjusted_close_price|volume |
|------------------------|------------|------------|------------|------------|--------------------|-----------|
|2020-04-17T00:00:00.000Z|6640.454102 |7134.450684 |6555.504395 |7116.804199 |7116.804199 |46783242377|
|2020-10-09T00:00:00.000Z|10677.625000|10939.799805|10569.823242|10923.627930|10923.627930 |21962121001|
|2020-10-12T00:00:00.000Z|11296.082031|11428.813477|11288.627930|11384.181641|11384.181641 |19968627060|
|2020-10-13T00:00:00.000Z|11296.082031|11428.813477|11288.627930|11384.181641|11384.181641 |19968627060|
*/
--2. Analysis
/*a.
******************************************
Q1: What is the average daily volume of Bitcoin
for the last 7 days?
+
Q2: Create a 1/0 flag if a specific day is higher
than the last 7 days volume average.
*********************************************/
WITH window_calculations AS (
SELECT
market_date,
volume,
ROUND(
AVG(volume) OVER (
ORDER BY market_date
RANGE BETWEEN '7 DAYS' PRECEDING AND '1 DAY' PRECEDING)
) AS past_weekly_avg_volume
FROM updated_daily_btc
)
SELECT
market_date,
volume,
past_weekly_avg_volume,
CASE
WHEN volume > past_weekly_avg_volume THEN 1
ELSE 0
END AS volume_flag
FROM window_calculations
ORDER BY market_date DESC
LIMIT 10;
/*Result:
|market_date |volume |past_weekly_avg_volume|volume_flag|
|------------------------|------------|----------------------|-----------|
|2021-02-24T00:00:00.000Z|88364793856 |73509817753 |1 |
|2021-02-23T00:00:00.000Z|106102492824|69359402048 |1 |
|2021-02-22T00:00:00.000Z|92052420332 |67219042453 |1 |
|2021-02-21T00:00:00.000Z|51897585191 |69983483887 |0 |
|2021-02-20T00:00:00.000Z|68145460026 |70284197619 |0 |
|2021-02-19T00:00:00.000Z|63495496918 |72149846802 |0 |
|2021-02-18T00:00:00.000Z|52054723579 |76340445121 |0 |
|2021-02-17T00:00:00.000Z|80820545404 |77266237191 |1 |
|2021-02-16T00:00:00.000Z|77049582886 |79374846334 |0 |
|2021-02-15T00:00:00.000Z|77069903166 |82860177694 |0 |
*/
/*b.
******************************************
Q3: What is the percentage of weeks (starting
on a Monday) where there are 4 or more days with
increased volume?
+
Q4: CHow many high volume weeks are there broken
down by year for the weeks with 5-7 days above
the 7 day volume average excluding 2021?
*********************************************/
--break down by week
WITH window_calculations AS (
SELECT
market_date,
volume,
ROUND(
AVG(volume) OVER (
ORDER BY market_date
RANGE BETWEEN '7 DAYS' PRECEDING AND '1 DAY' PRECEDING)
) AS past_weekly_avg_volume
FROM updated_daily_btc
),
--generate the date
date_calculations AS (
SELECT
market_date,
DATE_TRUNC('week', market_date)::DATE start_of_week,
volume,
CASE
WHEN volume > past_weekly_avg_volume THEN 1
ELSE 0
END AS volume_flag
FROM window_calculations
),
--aggregate the metrics
aggregated_weeks AS (
SELECT
start_of_week,
SUM(volume_flag) AS weekly_high_volume_days
FROM date_calculations
GROUP BY start_of_week
)
--calculate the percentage
SELECT
weekly_high_volume_days,
ROUND (
100 * COUNT(*)/SUM(COUNT(*)) OVER (),
2) AS percentage_of_weeks
FROM aggregated_weeks
GROUP BY weekly_high_volume_days
ORDER BY weekly_high_volume_days;
/* Result:
|weekly_high_volume_days |percentage_of_weeks|
|------------------------|-------------------|
|0 |6.23 |
|1 |13.65 |
|2 |20.47 |
|3 |20.47 |
|4 |18.99 |
|5 |11.87 |
|6 |6.23 |
|7 |2.08 |
*/
--breakdown by year
WITH window_calculations AS (
SELECT
market_date,
volume,
ROUND(
AVG(volume) OVER (
ORDER BY market_date
RANGE BETWEEN '7 DAYS' PRECEDING AND '1 DAY' PRECEDING)
) AS past_weekly_avg_volume
FROM updated_daily_btc
),
--generate the date
date_calculations AS (
SELECT
market_date,
DATE_TRUNC('week', market_date)::DATE start_of_week,
volume,
CASE
WHEN volume > past_weekly_avg_volume THEN 1
ELSE 0
END AS volume_flag
FROM window_calculations
),
--aggregate the metrics
aggregated_weeks AS (
SELECT
start_of_week,
SUM(volume_flag) AS weekly_high_volume_days
FROM date_calculations
GROUP BY start_of_week
)
--calculate the percentage (by year)
SELECT
EXTRACT(YEAR FROM start_of_week) AS market_year,
COUNT(*) AS high_volume_weeks,
ROUND(100 * COUNT(*) / SUM(COUNT(*)) OVER (), 2) AS percentage_of_total
FROM aggregated_weeks
WHERE weekly_high_volume_days >= 5
AND start_of_week < '2021-01-01'::DATE
GROUP BY 1
ORDER BY 1;
/*Result:
|market_year |high_volume_weeks|percentage_of_total|
|------------------------|-----------------|-------------------|
|2014 |2 |2.99 |
|2015 |3 |4.48 |
|2016 |13 |19.40 |
|2017 |17 |25.37 |
|2018 |8 |11.94 |
|2019 |11 |16.42 |
|2020 |13 |19.40 |
*/
--c.Statistical Analysis
--simple moving average
WITH base_data AS (
SELECT
market_date,
close_price,
-- averages
ROUND(AVG(close_price) OVER w_14) AS avg_14,
ROUND(AVG(close_price) OVER w_28) AS avg_28,
ROUND(AVG(close_price) OVER w_60) AS avg_60,
ROUND(AVG(close_price) OVER w_150) AS avg_150,
-- standard deviation
ROUND(STDDEV(close_price) OVER w_14) AS std_14,
ROUND(STDDEV(close_price) OVER w_28) AS std_28,
ROUND(STDDEV(close_price) OVER w_60) AS std_60,
ROUND(STDDEV(close_price) OVER w_150) AS std_150,
-- max
ROUND(MAX(close_price) OVER w_14) AS max_14,
ROUND(MAX(close_price) OVER w_28) AS max_28,
ROUND(MAX(close_price) OVER w_60) AS max_60,
ROUND(MAX(close_price) OVER w_150) AS max_150,
-- min
ROUND(MIN(close_price) OVER w_14) AS min_14,
ROUND(MIN(close_price) OVER w_28) AS min_28,
ROUND(MIN(close_price) OVER w_60) AS min_60,
ROUND(MIN(close_price) OVER w_150) AS min_150
FROM updated_daily_btc
WINDOW
w_14 AS (ORDER BY MARKET_DATE RANGE BETWEEN '14 DAYS' PRECEDING AND '1 DAY' PRECEDING),
w_28 AS (ORDER BY MARKET_DATE RANGE BETWEEN '28 DAYS' PRECEDING AND '1 DAY' PRECEDING),
w_60 AS (ORDER BY MARKET_DATE RANGE BETWEEN '60 DAYS' PRECEDING AND '1 DAY' PRECEDING),
w_150 AS (ORDER BY MARKET_DATE RANGE BETWEEN '150 DAYS' PRECEDING AND '1 DAY' PRECEDING)
)
SELECT
market_date,
close_price,
CASE
WHEN close_price BETWEEN
(avg_14 - 2 * std_14) AND (avg_14 + 2 * std_14)
THEN 0
ELSE 1
END AS outlier_14,
CASE
WHEN close_price BETWEEN
(avg_28 - 2 * std_28) AND (avg_28 + 2 * std_28)
THEN 0
ELSE 1
END AS outlier_28,
CASE
WHEN close_price BETWEEN
(avg_60 - 2 * std_60) AND (avg_60 + 2 * std_60)
THEN 0
ELSE 1
END AS outlier_60,
CASE
WHEN close_price BETWEEN
(avg_150 - 2 * std_150) AND (avg_150 + 2 * std_150)
THEN 0
ELSE 1
END AS outlier_150
FROM base_data
ORDER BY market_date DESC
LIMIT 10;
;
/*Result:
|market_date |close_price |outlier_14|outlier_28|outlier_60|outlier_150|
|------------------------|------------|----------|----------|----------|-----------|
|2021-02-24T00:00:00.000Z|50460.234375|0 |0 |0 |1 |
|2021-02-23T00:00:00.000Z|48824.425781|0 |0 |0 |0 |
|2021-02-22T00:00:00.000Z|54207.320313|0 |0 |1 |1 |
|2021-02-21T00:00:00.000Z|57539.945313|1 |0 |1 |1 |
|2021-02-20T00:00:00.000Z|56099.519531|0 |0 |1 |1 |
|2021-02-19T00:00:00.000Z|55888.132813|1 |1 |1 |1 |
|2021-02-18T00:00:00.000Z|51679.796875|0 |0 |1 |1 |
|2021-02-17T00:00:00.000Z|52149.007813|0 |1 |1 |1 |
|2021-02-16T00:00:00.000Z|49199.871094|0 |0 |1 |1 |
|2021-02-15T00:00:00.000Z|47945.058594|0 |0 |1 |1 |
*/
--weighted moving average
/******************************************
we were tasked by a demanding Cryptocurrency
trading client who required custom weights
to be applied using the following combination
of simple moving averages:
|Time Period|Weight Factor|
|---------- |------------ |
|1-14 days |0.5 |
|15-28 days |0.3 |
|29-60 days |0.15 |
|61-150 days|0.05 |
*/
WITH base_data AS (
SELECT
market_date,
ROUND(close_price, 2) AS close_price,
ROUND(AVG(close_price) OVER w_1_to_14) AS avg_1_to_14,
ROUND(AVG(close_price) OVER w_15_28) AS avg_15_28,
ROUND(AVG(close_price) OVER w_29_60) AS avg_29_60,
ROUND(AVG(close_price) OVER w_61_150) AS avg_61_150
FROM updated_daily_btc
WINDOW
w_1_to_14 AS (ORDER BY MARKET_DATE RANGE BETWEEN
'14 DAYS' PRECEDING AND '1 DAY' PRECEDING),
w_15_28 AS (ORDER BY MARKET_DATE RANGE BETWEEN
'28 DAYS' PRECEDING AND '15 DAY' PRECEDING),
w_29_60 AS (ORDER BY MARKET_DATE RANGE BETWEEN
'60 DAYS' PRECEDING AND '29 DAY' PRECEDING),
w_61_150 AS (ORDER BY MARKET_DATE RANGE BETWEEN
'150 DAYS' PRECEDING AND '61 DAY' PRECEDING)
)
SELECT
market_date,
close_price,
0.5 * avg_1_to_14 + 0.3 * avg_15_28 + 0.15 * avg_29_60 + 0.05 * avg_61_150 AS custom_moving_avg
FROM base_data
ORDER BY market_date DESC
LIMIT 10;
/*Result:
|market_date |close_price |custom_moving_avg|
|------------------------|------------|-----------------|
|2021-02-24T00:00:00.000Z|50460.23 |42249.35 |
|2021-02-23T00:00:00.000Z|48824.43 |41822.85 |
|2021-02-22T00:00:00.000Z|54207.32 |41192.25 |
|2021-02-21T00:00:00.000Z|57539.95 |40335.75 |
|2021-02-20T00:00:00.000Z|56099.52 |39534.15 |
|2021-02-19T00:00:00.000Z|55888.13 |38735.40 |
|2021-02-18T00:00:00.000Z|51679.80 |38036.50 |
|2021-02-17T00:00:00.000Z|52149.01 |37408.70 |
|2021-02-16T00:00:00.000Z|49199.87 |36864.40 |
|2021-02-15T00:00:00.000Z|47945.06 |36344.80 |
*/
--Exponential Weighted Moving Average (EWMA)
DROP TABLE IF EXISTS base_table;
CREATE TEMP TABLE base_table AS
SELECT
market_date,
ROUND(close_price, 2) AS close_price,
ROUND(AVG(close_price) OVER w_1_to_14) AS sma_14,
ROW_NUMBER() OVER w_1_to_14 AS _row_number
FROM updated_daily_btc
WINDOW
w_1_to_14 AS (ORDER BY MARKET_DATE RANGE BETWEEN
'14 DAYS' PRECEDING AND '1 DAY' PRECEDING);
DROP TABLE IF EXISTS ewma_output;
CREATE TEMP TABLE ewma_output AS
WITH RECURSIVE output_table
(market_date, close_price, sma_14, ewma_14, _row_number)
AS (
-- The 1st query: we set initial output row using _row_number = 15
SELECT
market_date,
close_price,
sma_14,
sma_14 AS ewma_14,
_row_number
FROM base_table
WHERE _row_number = 15
UNION ALL
-- The 2nd query: we need to "shift" our output by 1 row
SELECT
base_table.market_date,
base_table.close_price,
base_table.sma_14,
-- Let's round out ewma_14 record to 2 decimal places
ROUND(
0.13 * base_table.sma_14 + (1 - 0.13) * output_table.ewma_14,
2
) AS ewma_14,
base_table._row_number
FROM output_table
INNER JOIN base_table
ON output_table._row_number + 1 = base_table._row_number
AND base_table._row_number > 15
)
SELECT * FROM output_table;
-- Pivot data for visualisation
SELECT
market_date,
'SMA' AS metric_name,
sma_14 AS metric_value
FROM ewma_output
UNION
SELECT
market_date,
'EWMA' AS metric_name,
ewma_14 AS metric_value
FROM ewma_output;
SELECT
market_date,
'Price' AS metric_name,
close_price AS metric_value
FROM ewma_output
ORDER BY market_date, metric_name;