Skip to content

Metropolis MCMC algorithm to estimate fault kinematic parameters in the elastic half-space dislocation model by Savage and Burford (1973)

Notifications You must be signed in to change notification settings

ncperdomo/GNSS_Elastic_Dislocation_MCMC

Repository files navigation

Elastic Dislocation Modelling using Metropolis MCMC

Binder

Fault Kinematics Along the San Andreas Fault from GPS Data Using Metropolis MCMC

Nicolás Castro-Perdomo

Indiana University, 2022

Main Goal:

  • Implement a random walk Metropolis sampling algorithm to estimate fault kinematic parameters $(a, v_0, D_L, x_0)$ in an elastic half-space dislocation model (e.g., Weertman and Weertman, 1964; Savage and Burford, 1973).

  • The model describes the theoretical horizontal velocity profile across a vertical fault as a function of the spatial variable $x$:

$$ v(x) = a + \frac{v_0}{\pi} tan^{-1} \Big( \frac{x-x_0}{D_L} \Big) $$

where $a$ is a constant vertical shift applied to the velocity profile, $v_0$ is the fault slip rate, $D_L$ is the fault locking depth, and $x_0$ is the fault location.

Model parameters

  • The parameter domain is defined as follows:

    • x $\in$ [−150, 150] km
    • a $\in$ [-5, 5] mm/yr
    • $v_0$ $\in$ [0, 50] mm/yr
    • $D_L$ $\in$ [0, 50] km
    • $x_0$ $\in$ [−25, 25] km
  • A Gaussian error model will be used, so that at any given location $x_j$, fault-parallel velocities satisfy:

$$ v_j = v(x_j) + \eta_j $$

where $\eta_j$ $\sim\mathcal{N}$(0, 1) and all $\eta_j$ are independently identically distributed

Metropolis MCMC:

Metropolis_MCMC_Results1

Metropolis_MCMC_Results2

Grid search inversion:

Metropolis_MCMC_Results2

About

Metropolis MCMC algorithm to estimate fault kinematic parameters in the elastic half-space dislocation model by Savage and Burford (1973)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published