-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaths.k
128 lines (112 loc) · 2.03 KB
/
maths.k
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
function are_coprime(a, b) {
return(gcd(a,b) == 1)
}
# returns a sequence containing the factors of n
function factors(n)
{
retval=[]
c=0
for(i=1;i<=floor(n/2);i++)
{
if(n%i==0){ retval[c]=i c++}
}
return(retval)
}
# prime predicate : test if n is prime
function primetest(n)
{
x=abs(n)
if(x<=1){ return(0) }
sr=floor(sqrt(x))
for(i=2;i<=sr;i++){ if(x%i==0){ return(0) } }
return(1)
}
# totient function (also called Euler's Phi function):
# returns how many numbers smaller than n are coprime to n.
# this algorithm is as brute force as it can get;
# the others I found on the interwebs were just wrong.
function totient(n)
{
if(n>0)
{
retval=1
if(n==1){ return(retval) }
for(i=2;i<n;i++)
{
if(gcd(n,i)==1){ retval++ }
}
return(retval)
}
else
{
print("invalid input")
}
}
# computes the underlying transition matrix of sequences s.
# sequence is considered a loop so the transition from
# last to first is taken into account.
function transit_mat(s)
{
retval=[]
_sm=map_seq(s)
sz1=sizeof(s)
sz2=sizeof(_sm)
#initialization
for(i=0;i<sz2;i++)
{
retval[_sm[i]]=[]
for(j=0;j<sz2;j++)
{
retval[_sm[i]][_sm[j]]=0
}
}
# accumulation
for(i=0;i<sz1;i++)
{
retval[s[i]][s[(i+1)%sz1]]++
}
# normalization
for(i=0;i<sz2;i++)
{
_sum=sum(seqi(retval[_sm[i]],_sm))
if(_sum!=0)
{
for(j=0;j<sz2;j++)
{
retval[_sm[i]][_sm[j]]=float(retval[_sm[i]][_sm[j]])/float(_sum)
}
}
}
return(retval)
}
function floor(n)
{
retval=integer(n)
if(retval>n){ retval-- }
return(retval)
}
function ceil(n)
{
retval=integer(n)
if((retval!=n) && (n>=0))
{
retval++
}
return(retval)
}
# returns -1 for negative numbers, 1 for positive, 0 for 0
function sign(n)
{
if(n<0){ return(-1)}
else
{
if(n==0){ return(0)}
else{ return(1) }
}
}
# returns -1 for negative numbers, 1 for positive, 1 for 0
function sign_zp(n)
{
if(n<0){ return(-1) }
else{ return(1) }
}