diff --git a/Updated_RaMP_Vignette.Rmd b/Updated_RaMP_Vignette.Rmd index 1e5c487..125ddd2 100644 --- a/Updated_RaMP_Vignette.Rmd +++ b/Updated_RaMP_Vignette.Rmd @@ -26,7 +26,7 @@ editor_options: This vignette will provide basic steps for interacting with [RaMP-DB](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5876005/) (Relational database of Metabolomic Pathways). -Details on RaMP-DB installation are also avaialble through GitHub (https://github.com/RAMP-project/RAMP). +Details on RaMP-DB installation are also avaialble through GitHub (https://github.com/ncats/RaMP-DB/). Questions can be asked through the Issues tab or by sending an email to [NCATSRaMP\@nih.gov](mailto:NCATSRaMP@nih.gov). RaMP-DB supports queries and enrichment analyses. @@ -239,7 +239,7 @@ This function takes in a vector of metabolites as an input and returns a vector ```{r} analytes.of.interest <- c("chebi:15422", "hmdb:HMDB0000064", "hmdb:HMDB0000148", "wikidata:Q426660") -new.ontologies <- getOntoFromMeta(analytes = analytes.of.interest, db=rampDB) +new.ontologies <- getOntoFromMeta(mets = analytes.of.interest, db=rampDB) datatable(new.ontologies) ``` @@ -333,11 +333,11 @@ Users can retrieve chemical classes and chemical property information from input ### Retrieve Chemical Classes from Input Metabolites RaMP incorporates Classyfire and lipidMAPS classes. -The function chemicalClassSurvey() function takes as input a vector of metabolites and outputs the classes associated with each metabolite input. +The function getChemClass() function takes as input a vector of metabolites and outputs the classes associated with each metabolite input. ```{r} metabolites.of.interest = c("pubchem:64969", "chebi:16958", "chemspider:20549", "kegg:C05598", "chemspider:388809", "pubchem:53861142", "hmdb:HMDB0001138", "hmdb:HMDB0029412") -chemical.classes <- chemicalClassSurvey(mets = metabolites.of.interest, db=rampDB) +chemical.classes <- getChemClass(mets = metabolites.of.interest, db=rampDB) metabolite.classes <- as.data.frame(chemical.classes$met_classes) datatable(metabolite.classes) @@ -369,7 +369,7 @@ classy_fire_classes <- chemical.enrichment$ClassyFire_class datatable(classy_fire_classes) ``` -*Note*: To explicitly view the results of mapping input IDs to RaMP, users can run the chemicalClassSurvey() function as noted in above in the section "Retrieve Chemical Class from Input Metabolites". +*Note*: To explicitly view the results of mapping input IDs to RaMP, users can run the getChemClass() function as noted in above in the section "Retrieve Chemical Class from Input Metabolites". ## Connect to Different Versions of RaMP Users are able to download previous versions of RaMP, and can input queries in these earlier versions. Some annotations have been added or changed since updated versions have been posted. diff --git a/Updated_RaMP_Vignette.html b/Updated_RaMP_Vignette.html index 9378c87..b1346c8 100644 --- a/Updated_RaMP_Vignette.html +++ b/Updated_RaMP_Vignette.html @@ -11,7 +11,7 @@ - +
This vignette will provide basic steps for interacting with RaMP-DB (Relational database of Metabolomic Pathways).
-Details on RaMP-DB installation are also avaialble through GitHub (https://github.com/RAMP-project/RAMP). Questions can be +
Details on RaMP-DB installation are also avaialble through GitHub (https://github.com/ncats/RaMP-DB/). Questions can be asked through the Issues tab or by sending an email to NCATSRaMP@nih.gov.
RaMP-DB supports queries and enrichment analyses. Supported queries are:
@@ -9630,11 +9630,11 @@## [1] "Locally available versions of RaMP SQLite DB, currently on your computer:"
-## [1] "2.6.3" "2.5.4" "2.4.2" "2.4.1" "2.3.1"
+## [1] "2.6.3" "2.6.2" "2.5.4" "2.5.0" "2.3.1"
## [1] "Available remote RaMP SQLite DB versions for download:"
## [1] "2.5.4" "2.5.0" "2.4.3" "2.4.2" "2.4.0" "2.3.2" "2.3.1"
## [1] "The following RaMP Database versions are available for download:"
-## [1] "2.5.0" "2.4.3" "2.4.0" "2.3.2"
+## [1] "2.4.3" "2.4.2" "2.4.0" "2.3.2"
## [1] "Use the command db <- RaMP(<new_version_number>) to download the specified version."
# load a local RaMP database or download the latest RaMP database version from the repository.
# If the version is not specified, the latest local version will be used.
@@ -9652,8 +9652,8 @@ Preparing your input for RaMP
geneprefixes <- getPrefixesFromAnalytes("gene", db=rampDB)
datatable(rbind(metabprefixes, geneprefixes))
## [1] "fired!"
## [1] "Timing .."
## user system elapsed
-## 0.593 0.286 1.802
+## 0.247 0.036 0.381
-
-
+
+
To retrieve information from multiple pathways, input a vector of pathway names:
myanalytes <- getAnalyteFromPathway(pathway=c("Wnt Signaling Pathway",
@@ -9696,7 +9696,7 @@ Retrieve Analytes From Input Pathway(s)
## [1] "fired!"
## [1] "Timing .."
## user system elapsed
-## 0.619 0.054 0.680
+## 0.247 0.028 0.277
pathwaydfids <- getPathwayFromAnalyte(c("ensembl:ENSG00000135679", "hmdb:HMDB0000064","hmdb:HMDB0000148", "ensembl:ENSG00000141510"), db=rampDB)
## [1] "Starting getPathwayFromAnalyte()"
-## [1] "Working on ID List..."
## [1] "finished getPathwayFromAnalyte()"
## [1] "Found 328 associated pathways."
-
-
+
+
Note that each row returns a pathway attributed to one of the input analytes. To retrieve the number of unique pathways returned for all analytes or each analyte, try the following:
@@ -9725,7 +9724,7 @@## [[1]]
-## [1] "Number of Unique Pathways Returned for L-Glutamic acid,Glutamate : 126"
+## [1] "Number of Unique Pathways Returned for L-Glutamate : 126"
##
## [[2]]
## [1] "Number of Unique Pathways Returned for TP53 : 144"
@@ -9801,8 +9800,8 @@ Perform Pathway Enrichment
datatable(clusters$fishresults %>% mutate_if(is.numeric, ~ round(., 8)),
rownames = FALSE
)
To view clustered pathway results:
pathwayResultsPlot(filtered.fisher.results, text_size = 8, perc_analyte_overlap = 0.2,
min_pathway_tocluster = 2, perc_pathway_overlap = 0.2, interactive = FALSE, db=rampDB)
## The input list has 10 chebi IDs.
## The input list has 6 uniprot IDs.
## [1] "Passed the getReactionClassStats"
-## [1] "humanProtein TRUE"
## [1] "Completed reaction class query..."
-
-
+
+
## Finished getReactionsForAnalytes()
# just show the reactions with at least one metabolite and one protein in commmon.
datatable(subset(reactionsLists$metProteinCommonReactions))
Three reaction lists are returned, metabolites-to-reactions, proteins-to-reactions, and reactions that have at least one metaboite and one protein from the input analyte list.
@@ -9957,8 +9955,8 @@RaMP incorporates Classyfire and lipidMAPS classes. The function -chemicalClassSurvey() function takes as input a vector of metabolites -and outputs the classes associated with each metabolite input.
+getChemClass() function takes as input a vector of metabolites and +outputs the classes associated with each metabolite input.metabolites.of.interest = c("pubchem:64969", "chebi:16958", "chemspider:20549", "kegg:C05598", "chemspider:388809", "pubchem:53861142", "hmdb:HMDB0001138", "hmdb:HMDB0029412")
-chemical.classes <- chemicalClassSurvey(mets = metabolites.of.interest, db=rampDB)
## [1] "Starting Chemical Class Survey"
## [1] "...finished metabolite list query..."
## [1] "...finished DB population query..."
@@ -9982,8 +9980,8 @@ Retrieve Chemical Classes from Input Metabolites
## [1] "Finished Chemical Class Survey"
-
-
+
+
## Finished Chemical Property Query
-
-
+
+
# To retrieve results for the ClassyFire Class:
classy_fire_classes <- chemical.enrichment$ClassyFire_class
datatable(classy_fire_classes)
Note: To explicitly view the results of mapping input IDs to -RaMP, users can run the chemicalClassSurvey() function as noted in above -in the section “Retrieve Chemical Class from Input Metabolites”.
+RaMP, users can run the getChemClass() function as noted in above in the +section “Retrieve Chemical Class from Input Metabolites”.## R version 4.3.2 (2023-10-31)
-## Platform: x86_64-apple-darwin20 (64-bit)
-## Running under: macOS Sonoma 14.6.1
+## R version 4.4.1 (2024-06-14)
+## Platform: aarch64-apple-darwin20
+## Running under: macOS Sonoma 14.0
##
## Matrix products: default
-## BLAS: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRblas.0.dylib
-## LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
+## BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib
+## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
@@ -10074,25 +10072,25 @@ Connect to Different Versions of RaMP
## loaded via a namespace (and not attached):
## [1] gtable_0.3.5 xfun_0.47 bslib_0.8.0
## [4] ggplot2_3.5.1 visNetwork_2.1.2 htmlwidgets_1.6.4
-## [7] lattice_0.21-9 vctrs_0.6.5 tools_4.3.2
+## [7] lattice_0.22-6 vctrs_0.6.5 tools_4.4.1
## [10] crosstalk_1.2.1 generics_0.1.3 curl_5.2.2
## [13] Polychrome_1.5.1 tibble_3.2.1 fansi_1.0.6
## [16] RSQLite_2.3.7 highr_0.11 blob_1.2.4
## [19] janeaustenr_1.0.0 pkgconfig_2.0.3 tokenizers_0.3.0
-## [22] Matrix_1.6-4 data.table_1.16.0 dbplyr_2.4.0
-## [25] scatterplot3d_0.3-44 lifecycle_1.0.4 compiler_4.3.2
+## [22] Matrix_1.7-0 data.table_1.16.0 dbplyr_2.5.0
+## [25] scatterplot3d_0.3-44 lifecycle_1.0.4 compiler_4.4.1
## [28] farver_2.1.2 munsell_0.5.1 htmltools_0.5.8.1
## [31] SnowballC_0.7.1 sass_0.4.9 yaml_2.3.10
## [34] lazyeval_0.2.2 tidytext_0.4.2 plotly_4.10.4
## [37] pillar_1.9.0 jquerylib_0.1.4 tidyr_1.3.1
## [40] upsetjs_1.11.1 cachem_1.1.0 tidyselect_1.2.1
## [43] digest_0.6.37 stringi_1.8.4 purrr_1.0.2
-## [46] labeling_0.4.3 fastmap_1.2.0 grid_4.3.2
+## [46] labeling_0.4.3 fastmap_1.2.0 grid_4.4.1
## [49] colorspace_2.1-1 cli_3.6.3 utf8_1.2.4
-## [52] withr_3.0.1 filelock_1.0.2 scales_1.3.0
+## [52] withr_3.0.1 filelock_1.0.3 scales_1.3.0
## [55] bit64_4.0.5 rmarkdown_2.28 httr_1.4.7
## [58] bit_4.0.5 memoise_2.0.1 evaluate_0.24.0
-## [61] knitr_1.48 viridisLite_0.4.2 BiocFileCache_2.10.1
+## [61] knitr_1.48 viridisLite_0.4.2 BiocFileCache_2.12.0
## [64] rlang_1.1.4 Rcpp_1.0.13 glue_1.7.0
## [67] DBI_1.2.3 rstudioapi_0.16.0 jsonlite_1.8.8
## [70] R6_2.5.1