Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ENH] Add (poly)coherence functions #76

Merged
merged 13 commits into from
Jun 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 11 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,11 +154,19 @@ and was adapted to python by [Giuseppe Ferraro](mailto:giuseppe.ferraro@isae-sup
2022 Sep 27;22(19):7314. https://doi.org/10.3390/s22197314.
```

### 6. Real-Time Phase Estimation
### 6. Phase Estimation

This code is based on the Matlab implementation from [Michael Rosenblum](http://www.stat.physik.uni-potsdam.de/~mros), and its corresponding paper [1].
The oscillator code is based on the Matlab implementation from [Michael
Rosenblum](http://www.stat.physik.uni-potsdam.de/~mros), and its corresponding
paper [1]. The Endpoint Corrected Hilbert Transform (ECHT) method was adapted
from [2].

```sql
[1] Rosenblum, M., Pikovsky, A., Kühn, A.A. et al. Real-time estimation of phase and amplitude with application to neural data. Sci Rep 11, 18037 (2021). https://doi.org/10.1038/s41598-021-97560-5
[1] Rosenblum, M., Pikovsky, A., Kühn, A.A. et al. Real-time estimation of phase
and amplitude with application to neural data. Sci Rep 11, 18037 (2021).
https://doi.org/10.1038/s41598-021-97560-5
[2] Schreglmann, S. R., Wang, D., Peach, R. L., Li, J., Zhang, X., Latorre, A.,
... & Grossman, N. (2021). Non-invasive suppression of essential tremor via
phase-locked disruption of its temporal coherence. Nature communications, 12(1), 363.

```
6 changes: 4 additions & 2 deletions doc/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
# -- Project information -----------------------------------------------------

project = "MEEGkit"
copyright = "2023, Nicolas Barascud"
copyright = "2024, Nicolas Barascud"
author = "Nicolas Barascud"
release = meegkit.__version__
version = meegkit.__version__
Expand Down Expand Up @@ -63,7 +63,7 @@
"show-inheritance": True,
"exclude-members": "__weakref__"
}
numpydoc_show_class_members = True
numpydoc_show_class_members = False

# The suffix(es) of source filenames.
# You can specify multiple suffix as a list of string:
Expand Down Expand Up @@ -129,3 +129,5 @@
"ignore_pattern": "config.py",
"run_stale_examples": False,
}

suppress_warnings = ["config.cache"]
1 change: 0 additions & 1 deletion doc/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,6 @@ Here is a list of the methods and techniques available in ``meegkit``:
~meegkit.tspca
~meegkit.utils


Examples gallery
----------------

Expand Down
23 changes: 23 additions & 0 deletions doc/modules/meegkit.phase.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
meegkit.phase
=============

.. automodule:: meegkit.phase

.. rubric:: Classes

.. autosummary::

NonResOscillator
ResOscillator
Device
ECHT

.. rubric:: Functions

.. autosummary::

locking_based_phase
rk
init_coefs
one_step_oscillator
one_step_integrator
25 changes: 25 additions & 0 deletions doc/modules/meegkit.utils.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,11 +6,14 @@ meegkit.utils
.. autosummary::

auditory
buffer
coherence
covariances
denoise
matrix
sig
stats
trca

|

Expand All @@ -23,6 +26,28 @@ Auditory
.. autosummary::


|

----

Buffer
------
.. automodule:: meegkit.utils.buffer

.. autosummary::


|

----

Coherence
---------
.. automodule:: meegkit.utils.coherence

.. autosummary::


|

----
Expand Down
73 changes: 73 additions & 0 deletions doc/sg_execution_times.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@

:orphan:

.. _sphx_glr_sg_execution_times:


Computation times
=================
**00:29.509** total execution time for 13 files **from all galleries**:

.. container::

.. raw:: html

<style scoped>
<link href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/5.3.0/css/bootstrap.min.css" rel="stylesheet" />
<link href="https://cdn.datatables.net/1.13.6/css/dataTables.bootstrap5.min.css" rel="stylesheet" />
</style>
<script src="https://code.jquery.com/jquery-3.7.0.js"></script>
<script src="https://cdn.datatables.net/1.13.6/js/jquery.dataTables.min.js"></script>
<script src="https://cdn.datatables.net/1.13.6/js/dataTables.bootstrap5.min.js"></script>
<script type="text/javascript" class="init">
$(document).ready( function () {
$('table.sg-datatable').DataTable({order: [[1, 'desc']]});
} );
</script>

.. list-table::
:header-rows: 1
:class: table table-striped sg-datatable

* - Example
- Time
- Mem (MB)
* - :ref:`sphx_glr_auto_examples_example_trca.py` (``../examples/example_trca.py``)
- 00:11.533
- 0.0
* - :ref:`sphx_glr_auto_examples_example_dss_line.py` (``../examples/example_dss_line.py``)
- 00:07.115
- 0.0
* - :ref:`sphx_glr_auto_examples_example_phase_estimation.py` (``../examples/example_phase_estimation.py``)
- 00:07.064
- 0.0
* - :ref:`sphx_glr_auto_examples_example_mcca.py` (``../examples/example_mcca.py``)
- 00:01.182
- 0.0
* - :ref:`sphx_glr_auto_examples_example_mcca_2.py` (``../examples/example_mcca_2.py``)
- 00:00.535
- 0.0
* - :ref:`sphx_glr_auto_examples_example_asr.py` (``../examples/example_asr.py``)
- 00:00.512
- 0.0
* - :ref:`sphx_glr_auto_examples_example_ress.py` (``../examples/example_ress.py``)
- 00:00.459
- 0.0
* - :ref:`sphx_glr_auto_examples_example_detrend.py` (``../examples/example_detrend.py``)
- 00:00.259
- 0.0
* - :ref:`sphx_glr_auto_examples_example_star_dss.py` (``../examples/example_star_dss.py``)
- 00:00.246
- 0.0
* - :ref:`sphx_glr_auto_examples_example_star.py` (``../examples/example_star.py``)
- 00:00.197
- 0.0
* - :ref:`sphx_glr_auto_examples_example_dss.py` (``../examples/example_dss.py``)
- 00:00.146
- 0.0
* - :ref:`sphx_glr_auto_examples_example_echt.py` (``../examples/example_echt.py``)
- 00:00.132
- 0.0
* - :ref:`sphx_glr_auto_examples_example_dering.py` (``../examples/example_dering.py``)
- 00:00.129
- 0.0
97 changes: 97 additions & 0 deletions examples/example_echt.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Endpoint-corrected Hilbert transform (ECHT) phase estimation\n\nThis example shows how to causally estimate the phase of a signal using\n\nUses `meegkit.phase.ECHT()`.\n\n## References\n.. [1] Schreglmann, S. R., Wang, D., Peach, R. L., Li, J., Zhang, X., Latorre,\n A., ... & Grossman, N. (2021). Non-invasive suppression of essential tremor\n via phase-locked disruption of its temporal coherence. Nature\n communications, 12(1), 363.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\nimport numpy as np\nfrom scipy.signal import hilbert\n\nfrom meegkit.phase import ECHT\n\nrng = np.random.default_rng(38872)\n\nplt.rcParams[\"axes.grid\"] = True\nplt.rcParams[\"grid.linestyle\"] = \":\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Build data\nFirst, we generate a multi-component signal with amplitude and phase\nmodulations, as described in the paper [1]_.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"f0 = 2\n\nN = 500\nsfreq = 100\ntime = np.linspace(0, N / sfreq, N)\nX = np.cos(2 * np.pi * f0 * time - np.pi / 4)\nphase_true = np.angle(hilbert(X))\nX += rng.normal(0, 0.5, N) # Add noise"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Compute phase and amplitude\nWe compute the Hilbert phase, as well as the phase obtained with the ECHT\nfilter.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"phase_hilbert = np.angle(hilbert(X)) # Hilbert phase\n\n# Compute ECHT-filtered signal\nfilt_BW = f0 / 2\nl_freq = f0 - filt_BW / 2\nh_freq = f0 + filt_BW / 2\necht = ECHT(l_freq, h_freq, sfreq)\n\nXf = echt.fit_transform(X)\nphase_echt = np.angle(Xf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Visualize signal\nPlot the results\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"fig, ax = plt.subplots(3, 1, figsize=(8, 6))\nax[0].plot(time, X)\nax[0].set_xlabel(\"Time (s)\")\nax[0].set_title(\"Test signal\")\nax[0].set_ylabel(\"Amplitude\")\nax[1].psd(X, Fs=sfreq, NFFT=2048*4, noverlap=sfreq)\nax[1].set_ylabel(\"PSD (dB/Hz)\")\nax[1].set_title(\"Test signal's Fourier spectrum\")\nax[2].plot(time, phase_true, label=\"True phase\", ls=\":\")\nax[2].plot(time, phase_echt, label=\"ECHT phase\", lw=.5, alpha=.8)\nax[2].plot(time, phase_hilbert, label=\"Hilbert phase\", lw=.5, alpha=.8)\nax[2].set_title(\"Phase\")\nax[2].set_ylabel(\"Amplitude\")\nax[2].set_xlabel(\"Time (s)\")\nax[2].legend(loc=\"upper right\", fontsize=\"small\")\nplt.tight_layout()\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
81 changes: 81 additions & 0 deletions examples/example_echt.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
"""
Endpoint-corrected Hilbert transform (ECHT) phase estimation
============================================================

This example shows how to causally estimate the phase of a signal using the
Endpoint-corrected Hilbert transform (ECHT) [1]_.

Uses `meegkit.phase.ECHT()`.

References
----------
.. [1] Schreglmann, S. R., Wang, D., Peach, R. L., Li, J., Zhang, X., Latorre,
A., ... & Grossman, N. (2021). Non-invasive suppression of essential tremor
via phase-locked disruption of its temporal coherence. Nature
communications, 12(1), 363.

"""
import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import hilbert

from meegkit.phase import ECHT

rng = np.random.default_rng(38872)

plt.rcParams["axes.grid"] = True
plt.rcParams["grid.linestyle"] = ":"

###############################################################################
# Build data
# -----------------------------------------------------------------------------
# First, we generate a multi-component signal with amplitude and phase
# modulations, as described in the paper [1]_.
f0 = 2

N = 500
sfreq = 100
time = np.linspace(0, N / sfreq, N)
X = np.cos(2 * np.pi * f0 * time - np.pi / 4)
phase_true = np.angle(hilbert(X))
X += rng.normal(0, 0.5, N) # Add noise

###############################################################################
# Compute phase and amplitude
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# We compute the Hilbert phase, as well as the phase obtained with the ECHT
# filter.
phase_hilbert = np.angle(hilbert(X)) # Hilbert phase

# Compute ECHT-filtered signal
filt_BW = f0 / 2
l_freq = f0 - filt_BW / 2
h_freq = f0 + filt_BW / 2
echt = ECHT(l_freq, h_freq, sfreq)

Xf = echt.fit_transform(X)
phase_echt = np.angle(Xf)

###############################################################################
# Visualize signal
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Here we plot the original signal, its Fourier spectrum, and the phase obtained
# with the Hilbert transform and the ECHT filter. The ECHT filter provides a
# much smoother phase estimate than the Hilbert transform
fig, ax = plt.subplots(3, 1, figsize=(8, 6))
ax[0].plot(time, X)
ax[0].set_xlabel("Time (s)")
ax[0].set_title("Test signal")
ax[0].set_ylabel("Amplitude")
ax[1].psd(X, Fs=sfreq, NFFT=2048*4, noverlap=sfreq)
ax[1].set_ylabel("PSD (dB/Hz)")
ax[1].set_title("Test signal's Fourier spectrum")
ax[2].plot(time, phase_true, label="True phase", ls=":")
ax[2].plot(time, phase_echt, label="ECHT phase", lw=.5, alpha=.8)
ax[2].plot(time, phase_hilbert, label="Hilbert phase", lw=.5, alpha=.8)
ax[2].set_title("Phase")
ax[2].set_ylabel("Amplitude")
ax[2].set_xlabel("Time (s)")
ax[2].legend(loc="upper right", fontsize="small")
plt.tight_layout()
plt.show()
Loading
Loading