-
Notifications
You must be signed in to change notification settings - Fork 8
/
run_sample_pseudo_gt.py
164 lines (125 loc) · 6.57 KB
/
run_sample_pseudo_gt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Original Code: https://github.com/jiwoon-ahn/irn
import argparse
import os
import numpy as np
from misc import pyutils
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Ood Config
parser.add_argument("--ood_root", default='WOoD_dataset/openimages/OoD_images', type=str,
help="Path to VOC 2012 Devkit, must contain ./JPEGImages as subdirectory.")
parser.add_argument("--ood_list", default='WOoD_dataset/openimages/ood_list.txt', type=str)
parser.add_argument("--ood_coeff", default=0.25, type=float)
parser.add_argument("--ood_batch_size", default=16, type=int)
parser.add_argument("--cluster_K", default=50, type=int)
parser.add_argument("--distance_lambda", default=0.007, type=float)
parser.add_argument("--ood_dist_topk", default=0.2, type=float)
# Environment
parser.add_argument("--num_workers", default=os.cpu_count()//2, type=int)
parser.add_argument("--voc12_root", default='Dataset/VOC2012_SEG_AUG/', type=str,
help="Path to VOC 2012 Devkit, must contain ./JPEGImages as subdirectory.")
# Dataset
parser.add_argument("--train_list", default="voc12/train_aug.txt", type=str)
parser.add_argument("--val_list", default="voc12/val.txt", type=str)
parser.add_argument("--infer_list", default="voc12/train_aug.txt", type=str,
help="voc12/train_aug.txt to train a fully supervised model, "
"voc12/train.txt or voc12/val.txt to quickly check the quality of the labels.")
parser.add_argument("--chainer_eval_set", default="train", type=str)
# Class Activation Map
parser.add_argument("--cam_network", default="net.resnet50_cam", type=str)
parser.add_argument("--cam_crop_size", default=512, type=int)
parser.add_argument("--cam_batch_size", default=16, type=int)
parser.add_argument("--cam_num_epoches", default=5, type=int)
parser.add_argument("--cam_learning_rate", default=0.1, type=float)
parser.add_argument("--cam_weight_decay", default=1e-4, type=float)
parser.add_argument("--cam_eval_thres", default=0.15, type=float)
parser.add_argument("--cam_scales", default=(1.0, 0.5, 1.5, 2.0),
help="Multi-scale inferences")
# Mining Inter-pixel Relations
parser.add_argument("--conf_fg_thres", default=0.30, type=float)
parser.add_argument("--conf_bg_thres", default=0.15, type=float)
# Inter-pixel Relation Network (IRNet)
parser.add_argument("--irn_network", default="net.resnet50_irn", type=str)
parser.add_argument("--irn_crop_size", default=512, type=int)
parser.add_argument("--irn_batch_size", default=32, type=int)
parser.add_argument("--irn_num_epoches", default=3, type=int)
parser.add_argument("--irn_learning_rate", default=0.1, type=float)
parser.add_argument("--irn_weight_decay", default=1e-4, type=float)
# Random Walk Params
parser.add_argument("--beta", default=10)
parser.add_argument("--exp_times", default=8,
help="Hyper-parameter that controls the number of random walk iterations,"
"The random walk is performed 2^{exp_times}.")
parser.add_argument("--ins_seg_bg_thres", default=0.25)
parser.add_argument("--sem_seg_bg_thres", default=0.22)
parser.add_argument("--np_power", default=1.5, type=float)
# Output Path
parser.add_argument("--log_name", default="sample_train_eval", type=str)
parser.add_argument("--cam_weights_name", default="sess/res50_cam_ood.pth", type=str)
parser.add_argument("--irn_weights_name", default="sess/res50_irn_ood.pth", type=str)
parser.add_argument("--cam_out_dir", default="result/cam_ood_advcam", type=str)
#
parser.add_argument("--ir_label_out_dir", default="result/ir_label", type=str)
parser.add_argument("--sem_seg_out_dir", default="result/sem_seg_ood", type=str)
parser.add_argument("--ins_seg_out_dir", default="result/ins_seg_ood", type=str)
# Step
parser.add_argument("--train_cam_pass", default=False, type=bool)
parser.add_argument("--make_cam_pass", default=False, type=bool)
parser.add_argument("--eval_cam_pass", default=False, type=bool)
parser.add_argument("--cam_to_ir_label_pass", default=True, type=bool)
parser.add_argument("--train_irn_pass", default=True, type=bool)
parser.add_argument("--make_ins_seg_pass", default=False, type=bool)
parser.add_argument("--eval_ins_seg_pass", default=False, type=bool)
parser.add_argument("--make_sem_seg_pass", default=True, type=bool)
parser.add_argument("--eval_sem_seg_pass", default=True, type=bool)
args = parser.parse_args()
os.makedirs("sess", exist_ok=True)
os.makedirs(args.cam_out_dir, exist_ok=True)
os.makedirs(args.ir_label_out_dir, exist_ok=True)
os.makedirs(args.sem_seg_out_dir, exist_ok=True)
os.makedirs(args.ins_seg_out_dir, exist_ok=True)
pyutils.Logger(args.log_name + '.log')
print(vars(args))
if args.train_cam_pass is True:
import step.train_cam_clustering
timer = pyutils.Timer('step.train_cam:')
step.train_cam_clustering.run(args)
if args.make_cam_pass is True:
import step.make_cam
timer = pyutils.Timer('step.make_cam:')
step.make_cam.run(args)
if args.eval_cam_pass is True:
import step.eval_cam
timer = pyutils.Timer('step.eval_cam:')
final_miou = []
for i in range(8, 15):
t = i / 100.0
args.cam_eval_thres = t
miou, precision, recall = step.eval_cam.run(args)
final_miou.append(miou)
print(args.cam_out_dir)
print(final_miou)
print(np.max(np.array(final_miou)))
if args.cam_to_ir_label_pass is True:
import step.cam_to_ir_label
timer = pyutils.Timer('step.cam_to_ir_label:')
step.cam_to_ir_label.run(args)
if args.train_irn_pass is True:
import step.train_irn
timer = pyutils.Timer('step.train_irn:')
step.train_irn.run(args)
if args.make_ins_seg_pass is True:
import step.make_ins_seg_labels
timer = pyutils.Timer('step.make_ins_seg_labels:')
step.make_ins_seg_labels.run(args)
if args.eval_ins_seg_pass is True:
import step.eval_ins_seg
timer = pyutils.Timer('step.eval_ins_seg:')
step.eval_ins_seg.run(args)
if args.make_sem_seg_pass is True:
import step.make_sem_seg_labels
timer = pyutils.Timer('step.make_sem_seg_labels:')
step.make_sem_seg_labels.run(args)
if args.eval_sem_seg_pass is True:
import step.eval_sem_seg
step.eval_sem_seg.run(args)