forked from facebookresearch/detectron2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
180 lines (138 loc) · 6.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()
# import some common libraries
import numpy as np
import os, json, cv2, random
import pycocotools
import skimage.draw
from PIL import Image, ImageDraw
from progress.bar import Bar
import datetime
# import some common detectron2 utilities
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor, DefaultTrainer
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog
from detectron2.structures import BoxMode
def convert_to_rle(annotation, height, width):
"""Convert polygons and complex polygons to COCO RLE format.
Returns: a dictionary with
"""
# complex polygons have multiple "paths" (polygons)
if 'complex_polygon' in annotation:
polygons = annotation['complex_polygon']['path']
else:
polygons = [annotation['polygon']['path']]
mask = np.zeros([height, width, len(polygons)], dtype=np.uint8)
for ind_pol, pol in enumerate(polygons):
all_points_y = []; all_points_x = [];
# not clear why this worked in TF...
for pt in pol:
if pt['x'] >= width: pt['x'] = width - 1
if pt['x'] < 0: pt['x'] = 0
if pt['y'] >= height: pt['y'] = height - 1
if pt['y'] < 0: pt['y'] = 0
all_points_y.append(pt['y'])
all_points_x.append(pt['x'])
# Get indexes of pixels inside the polygon and set them to 1
rr, cc = skimage.draw.polygon(all_points_y, all_points_x)
mask[rr, cc, ind_pol] = 1
# once we sum all the polygons any even values are holes (this should allow for "ring" holes, but it is now tested)
mask = ((np.sum(mask, axis=2)%2) == 1).astype(np.uint8)
# Return mask, and array of class IDs of each instance
return pycocotools.mask.encode(np.asarray(mask, order="F")), Image.fromarray(mask).getbbox()
def get_darwin_dataset(img_dir, train_val):
json_file = os.path.join(img_dir, train_val, train_val + ".json")
with open(json_file) as f:
imgs = json.load(f)
imgs = imgs[0:10]
dataset_dicts = []
bar = Bar('Importing Dataset', max=len(imgs))
for idx, img in enumerate(imgs):
record = {}
filename = os.path.join(img_dir,'images',img["image"]["original_filename"])
height, width = cv2.imread(filename).shape[:2]
record["file_name"] = filename
record["image_id"] = idx
record["height"] = height
record["width"] = width
annos = img["annotations"]
objs = []
for anno in annos:
poly, bbox = convert_to_rle(anno, height, width)
#check bounding boxes are healthy
# test_mask = pycocotools.mask.decode(poly)
# mask_img = Image.fromarray(test_mask.astype(np.bool)).convert('RGB')
# draw = ImageDraw.Draw(mask_img)
# draw.rectangle(bbox, fill=None, outline='red', width=3)
# mask_img.save('img.jpg')
obj = {
"bbox": bbox,
"bbox_mode": BoxMode.XYXY_ABS,
"segmentation": poly,
"category_id": 0,# change in the future for more than one category
}
objs.append(obj)
record["annotations"] = objs
dataset_dicts.append(record)
# # check masks are healthy
# test_mask = np.zeros([height, width, len(record["annotations"])], dtype=np.uint8)
# for idx, obj in enumerate(record["annotations"]):
# # decode RLE for all objects, create global mask and save image
# test_mask[:,:,idx] = pycocotools.mask.decode(obj['segmentation'])
# Image.fromarray(np.sum(test_mask, axis=2).astype(np.bool)).save('masks/' + img["image"]["original_filename"])
bar.next()
bar.finish()
return dataset_dicts
dataset_directory = "/home/ndserv05/Documents/Data/Corrosion"
# register training and validation datasets with detectron
for d in ["train", "val"]:
# get_darwin_dataset(dataset_directory, d)
DatasetCatalog.register("corrosion_" + d, lambda d=d: get_darwin_dataset(dataset_directory, d))
MetadataCatalog.get("corrosion_" + d).set(thing_classes=["Corrosion"])
corrosion_metadata = MetadataCatalog.get("corrosion_val")
# print(corrosion_metadata)
# check annotations
# dataset_dicts = get_darwin_dataset(dataset_directory, 'val')
# for d in random.sample(dataset_dicts, 3):
# img = Image.open(d["file_name"])
# visualizer = Visualizer(img, metadata=corrosion_metadata, scale=1)
# out = visualizer.draw_dataset_dict(d)
# Image.fromarray(out.get_image()).save(str(d['image_id']) + '.jpg')
# CONFIGURATION
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml"))
cfg.OUTPUT_DIR = "./output/" + "Corrosion_" + "{:%Y%m%dT%H%M}".format(datetime.datetime.now())
cfg.INPUT.MASK_FORMAT = "bitmask"
cfg.DATASETS.TRAIN = ("corrosion_train",)
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let training initialize from model zoo
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
cfg.SOLVER.MAX_ITER = 300 # 300 iterations seems good enough for this toy dataset; you will need to train longer for a practical dataset
cfg.SOLVER.STEPS = [] # do not decay learning rate
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512 # faster, and good enough for this toy dataset (default: 512)
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (corrosion)
# TRAIN
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)
trainer = DefaultTrainer(cfg)
trainer.resume_or_load(resume=False)
trainer.train()
# INFERENCE
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") # path to the model we just trained
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
predictor = DefaultPredictor(cfg)
# TEST INFERENCE
dataset_dicts = get_darwin_dataset(dataset_directory, 'val')
for d in random.sample(dataset_dicts, 3):
im = cv2.imread(d["file_name"])
# im = Image.open(d["file_name"])
outputs = predictor(im) # format is documented at https://detectron2.readthedocs.io/tutorials/models.html#model-output-format
print(outputs)
v = Visualizer(im, metadata=corrosion_metadata, scale=1)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
# cv2_imshow(out.get_image()[:, :, ::-1])
Image.fromarray(out.get_image()[:, :, ::-1]).save(str(d['image_id']) + '.jpg')