-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlambda_function.py
251 lines (187 loc) · 7.95 KB
/
lambda_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
### Required Libraries ###
from datetime import datetime
from dateutil.relativedelta import relativedelta
### Functionality Helper Functions ###
def parse_int(n):
"""
Securely converts a non-integer value to integer.
"""
try:
return int(n)
except ValueError:
return float("nan")
def build_validation_result(is_valid, violated_slot, message_content):
"""
Define a result message structured as Lex response.
"""
if message_content is None:
return {"isValid": is_valid, "violatedSlot": violated_slot}
return {
"isValid": is_valid,
"violatedSlot": violated_slot,
"message": {"contentType": "PlainText", "content": message_content},
}
### Dialog Actions Helper Functions ###
def get_slots(intent_request):
"""
Fetch all the slots and their values from the current intent.
"""
return intent_request["currentIntent"]["slots"]
def elicit_slot(session_attributes, intent_name, slots, slot_to_elicit, message):
"""
Defines an elicit slot type response.
"""
return {
"sessionAttributes": session_attributes,
"dialogAction": {
"type": "ElicitSlot",
"intentName": intent_name,
"slots": slots,
"slotToElicit": slot_to_elicit,
"message": message,
},
}
def delegate(session_attributes, slots):
"""
Defines a delegate slot type response.
"""
return {
"sessionAttributes": session_attributes,
"dialogAction": {"type": "Delegate", "slots": slots},
}
def close(session_attributes, fulfillment_state, message):
"""
Defines a close slot type response.
"""
response = {
"sessionAttributes": session_attributes,
"dialogAction": {
"type": "Close",
"fulfillmentState": fulfillment_state,
"message": message,
},
}
return response
"""
Step 3: Enhance the Robo Advisor with an Amazon Lambda Function
In this section, you will create an Amazon Lambda function that will validate the data provided by the user on the Robo Advisor.
1. Start by creating a new Lambda function from scratch and name it `recommendPortfolio`. Select Python 3.7 as runtime.
2. In the Lambda function code editor, continue by deleting the AWS generated default lines of code, then paste in the starter code provided in `lambda_function.py`.
3. Complete the `recommend_portfolio()` function by adding these validation rules:
* The `age` should be greater than zero and less than 65.
* The `investment_amount` should be equal to or greater than 5000.
4. Once the intent is fulfilled, the bot should respond with an investment recommendation based on the selected risk level as follows:
* **none:** "100% bonds (AGG), 0% equities (SPY)"
* **low:** "60% bonds (AGG), 40% equities (SPY)"
* **medium:** "40% bonds (AGG), 60% equities (SPY)"
* **high:** "20% bonds (AGG), 80% equities (SPY)"
> **Hint:** Be creative while coding your solution, you can have all the code on the `recommend_portfolio()` function, or you can split the functionality across different functions, put your Python coding skills in action!
5. Once you finish coding your Lambda function, test it using the sample test events provided for this Challenge.
6. After successfully testing your code, open the Amazon Lex Console and navigate to the `recommendPortfolio` bot configuration, integrate your new Lambda function by selecting it in the “Lambda initialization and validation” and “Fulfillment” sections.
7. Build your bot, and test it with valid and invalid data for the slots.
"""
def validate_data(age, dollars, intent_request):
"""
Validates the data provided by the user.
"""
# Validate the amount, it should be 0 < age < 65
if age is not None:
age = parse_int(
age
) # Since parameters are strings it's important to cast values
if age <0 or age >65:
return build_validation_result(
False,
"age",
"The person should be older than 0 and yanger 65 ",
)
# Validate the age, it should be > 5000
if dollars is not None:
dollars = parse_int(
dollars
) # Since parameters are strings it's important to cast values
if dollars < 5000:
return build_validation_result(
False,
"amount",
"The amount should be greater than 5000, "
"please provide a correct amount in dollars.",
)
# A True results is returned if age or amount are valid
return build_validation_result(True, None, None)
def get_recommendation(riskLevel):
"""
Returns a buying recommendation based on risk tolerance.
"""
recommendation = ""
if riskLevel == "none" :
recommendation = "100% bonds (AGG), 0% equities (SPY)"
elif riskLevel == "low":
recommendation = "60% bonds (AGG), 40% equities (SPY)"
elif riskLevel == "medium" :
recommendation = "40% bonds (AGG), 60% equities (SPY)"
elif riskLevel == "high":
recommendation = "20% bonds (AGG), 80% equities (SPY)"
else:
recommendation = "Choose between none, low, medium, high"
return recommendation
### Intents Handlers ###
def recommend_portfolio(intent_request):
"""
Performs dialog management and fulfillment for recommending a portfolio.
"""
first_name = get_slots(intent_request)["firstName"]
age = get_slots(intent_request)["age"]
investment_amount = get_slots(intent_request)["investmentAmount"]
risk_level = get_slots(intent_request)["riskLevel"]
source = intent_request["invocationSource"]
if source == "DialogCodeHook":
# This code performs basic validation on the supplied input slots.
# Gets all the slots
slots = get_slots(intent_request)
# Validates user's input using the validate_data function
validation_result = validate_data(age, investment_amount, intent_request)
# If the data provided by the user is not valid,
# the elicitSlot dialog action is used to re-prompt for the first violation detected.
if not validation_result["isValid"]:
slots[validation_result["violatedSlot"]] = None # Cleans invalid slot
# Returns an elicitSlot dialog to request new data for the invalid slot
return elicit_slot(
intent_request["sessionAttributes"],
intent_request["currentIntent"]["name"],
slots,
validation_result["violatedSlot"],
validation_result["message"],
)
# Fetch current session attributes
output_session_attributes = intent_request["sessionAttributes"]
# Once all slots are valid, a delegate dialog is returned to Lex to choose the next course of action.
return delegate(output_session_attributes, get_slots(intent_request))
recomendation=get_recommendation(risk_level)
# Return a message with conversion's result.
return close(
intent_request["sessionAttributes"],
"Fulfilled",
{
"contentType": "PlainText",
"content": """Thank you for your information;{}
""".format(recomendation
), },
)
### Intents Dispatcher ###
def dispatch(intent_request):
"""
Called when the user specifies an intent for this bot.
"""
intent_name = intent_request["currentIntent"]["name"]
# Dispatch to bot's intent handlers
if intent_name == "recommendPortfolio":
return recommend_portfolio(intent_request)
raise Exception("Intent with name " + intent_name + " not supported")
### Main Handler ###
def lambda_handler(event, context):
"""
Route the incoming request based on intent.
The JSON body of the request is provided in the event slot.
"""
return dispatch(event)