-
Notifications
You must be signed in to change notification settings - Fork 37
/
sp500_return_comparison.py
executable file
·464 lines (404 loc) · 13.4 KB
/
sp500_return_comparison.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#!/usr/bin/env -S uv run --quiet --script
# /// script
# dependencies = [
# "pandas",
# "matplotlib",
# "numpy",
# "plotly",
# "yfinance",
# "tabulate",
# "persistent-cache@git+https://github.com/namuan/persistent-cache"
# ]
# ///
"""
S&P 500 Daily Return Comparison Script with Day-by-Day Analysis
Usage:
./sp500_return_comparison.py -h
./sp500_return_comparison.py -v # To log INFO messages
./sp500_return_comparison.py -vv # To log DEBUG messages
./sp500_return_comparison.py -y 5 # Analyze last 5 full years
./sp500_return_comparison.py -y 10 -f averages.csv # Analyze last 10 full years with specific historical averages file
"""
import logging
from argparse import ArgumentParser, RawDescriptionHelpFormatter
from datetime import datetime
import numpy as np
import pandas as pd
from tabulate import tabulate
from common.market_data import download_ticker_data
def setup_logging(verbosity):
logging_level = logging.WARNING
if verbosity == 1:
logging_level = logging.INFO
elif verbosity >= 2:
logging_level = logging.DEBUG
logging.basicConfig(
handlers=[
logging.StreamHandler(),
],
format="%(asctime)s - %(filename)s:%(lineno)d - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging_level,
)
logging.captureWarnings(capture=True)
def get_full_year_dates(years_back):
"""Calculate start and end dates for full years"""
current_date = datetime.now()
start_year = current_date.year - years_back + 1
start_date = datetime(start_year, 1, 1)
return start_date, current_date
def parse_args():
parser = ArgumentParser(
description=__doc__, formatter_class=RawDescriptionHelpFormatter
)
parser.add_argument(
"-v",
"--verbose",
action="count",
default=0,
dest="verbose",
help="Increase verbosity of logging output",
)
parser.add_argument(
"-y",
"--years",
type=int,
default=5,
help="Number of full years to analyze (default: 5)",
)
parser.add_argument(
"-f",
"--file",
type=str,
required=True,
help="CSV file containing historical averages",
)
parser.add_argument(
"--show_plot",
action="store_true",
help="Show plot in browser instead of generating output file",
)
args = parser.parse_args()
# Calculate start and end dates based on years
start_date, end_date = get_full_year_dates(args.years)
args.start = start_date.strftime("%Y-%m-%d")
args.end = end_date.strftime("%Y-%m-%d")
return args
def load_historical_averages(file_path):
"""Load historical averages from CSV file"""
try:
logging.info(f"Loading historical averages from {file_path}")
df = pd.read_csv(file_path)
# Convert DataFrame to nested dictionary format
averages = {}
for index, row in df.iterrows():
month = int(row["Month"])
averages[month] = {}
for day in range(1, 32):
if str(day) in df.columns and pd.notna(row[str(day)]):
averages[month][day] = float(row[str(day)])
return averages
except Exception as e:
logging.error(f"Error loading historical averages: {e}")
raise
def get_sp500_data(start_date, end_date):
"""Fetch S&P 500 data for the specified date range"""
ticker = "SPY"
logging.info(f"Fetching S&P 500 data from {start_date} to {end_date}")
try:
sp500 = download_ticker_data(ticker, start=start_date, end=end_date)
sp500["Daily_Return"] = sp500["Close"].pct_change() * 100
return sp500
except Exception as e:
logging.error(f"Error fetching S&P 500 data: {e}")
raise
def compare_returns(sp500_data, historical_averages):
"""Compare actual returns with historical averages"""
results = []
for date_idx in sp500_data.index:
month = date_idx.month
day = date_idx.day
hist_avg = historical_averages.get(month, {}).get(day)
try:
actual_return = float(sp500_data.at[date_idx, "Daily_Return"])
if hist_avg is not None and not np.isnan(actual_return):
actual_return = round(actual_return, 2)
difference = round(actual_return - hist_avg, 2)
performance = (
"ABOVE"
if difference > 0
else "BELOW"
if difference < 0
else "EQUAL"
)
results.append(
{
"Date": date_idx.strftime("%Y-%m-%d"),
"Day": date_idx.strftime("%A"),
"Actual_Return": actual_return,
"Historical_Average": hist_avg,
"Difference": difference,
"Performance": performance,
}
)
except (ValueError, TypeError):
logging.debug(f"Skipping {date_idx}: Invalid or missing data")
continue
return pd.DataFrame(results)
def plot_return_scatter(comparison_df):
"""Create an interactive scatter plot comparing actual returns vs historical averages using Plotly"""
import plotly.graph_objects as go
comparison_df["Date"] = pd.to_datetime(comparison_df["Date"])
comparison_df["Year"] = comparison_df["Date"].dt.year
comparison_df["Month"] = comparison_df["Date"].dt.month
comparison_df["MonthName"] = comparison_df["Date"].dt.strftime("%B")
# Create figure
fig = go.Figure()
# Get unique years and months
years = sorted(comparison_df["Year"].unique())
months = list(range(1, 13))
current_year = datetime.now().year
# Create a colormap for the months
num_months = 12
month_colors = {
month: f"hsl({i * 360 / num_months}, 70%, 50%)"
for i, month in enumerate(months)
}
# Add traces for each month and year combination
for year in years:
for month in months:
data = comparison_df[
(comparison_df["Year"] == year) & (comparison_df["Month"] == month)
]
if not data.empty:
month_name = datetime(2000, month, 1).strftime("%B")
fig.add_trace(
go.Scatter(
x=data["Historical_Average"],
y=data["Actual_Return"],
mode="markers",
name=f"{year} - {month_name}",
marker=dict(
size=8,
color=month_colors[month],
opacity=0.7,
),
hovertemplate=(
"Date: %{customdata}<br>"
"Historical Average: %{x:.2f}%<br>"
"Actual Return: %{y:.2f}%<br>"
"<extra></extra>"
),
customdata=data["Date"].dt.strftime("%Y-%m-%d"),
visible=True if year == current_year else False,
)
)
# Calculate min and max values for both axes
x_min = comparison_df["Historical_Average"].min()
x_max = comparison_df["Historical_Average"].max()
y_min = comparison_df["Actual_Return"].min()
y_max = comparison_df["Actual_Return"].max()
# Add small padding (5% of range)
x_padding = (x_max - x_min) * 0.05
y_padding = (y_max - y_min) * 0.05
x_min = x_min - x_padding
x_max = x_max + x_padding
y_min = y_min - y_padding
y_max = y_max + y_padding
# Add zero lines
fig.add_hline(y=0, line_color="gray", opacity=0.3)
fig.add_vline(x=0, line_color="gray", opacity=0.3)
# Create dropdown menus with current year selected by default
updatemenus = [
dict(
buttons=[
dict(
args=[
{
"visible": [
year == int(fig.data[i].name.split(" - ")[0])
for i in range(len(fig.data))
]
}
],
label=str(year),
method="update",
)
for year in years
],
active=years.index(current_year)
if current_year in years
else 0, # Set active button to current year
direction="down",
showactive=True,
x=1.25,
xanchor="right",
y=1.05,
yanchor="top",
name="Year",
font=dict(color="#000000"),
bgcolor="#ffffff",
),
]
# Update layout
fig.update_layout(
title={
"text": "Actual Returns vs Historical Averages",
"font": {"color": "white"},
"y": 0.95,
"x": 0.40,
"xanchor": "center",
"yanchor": "top",
},
xaxis_title="Historical Average Return (%)",
yaxis_title="Actual Return (%)",
hovermode="closest",
paper_bgcolor="black",
plot_bgcolor="black",
font=dict(color="white"),
updatemenus=updatemenus,
showlegend=True,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=1.15,
font=dict(color="white"),
),
annotations=[
dict(
x=x_max * 0.7,
y=y_max * 0.7,
text="Both Positive<br>Outperforming",
showarrow=False,
font=dict(size=10, color="gray"),
),
dict(
x=x_min * 0.7,
y=y_max * 0.7,
text="Historical Negative<br>Actual Positive",
showarrow=False,
font=dict(size=10, color="gray"),
),
dict(
x=x_max * 0.7,
y=y_min * 0.7,
text="Historical Positive<br>Actual Negative",
showarrow=False,
font=dict(size=10, color="gray"),
),
dict(
x=x_min * 0.7,
y=y_min * 0.7,
text="Both Negative<br>Underperforming",
showarrow=False,
font=dict(size=10, color="gray"),
),
],
)
# Update axes
fig.update_xaxes(
showgrid=False,
zeroline=True,
zerolinewidth=2,
zerolinecolor="gray",
range=[x_min, x_max],
showline=True,
linewidth=2,
linecolor="gray",
color="white",
)
fig.update_yaxes(
showgrid=False,
zeroline=True,
zerolinewidth=2,
zerolinecolor="gray",
range=[y_min, y_max],
showline=True,
linewidth=2,
linecolor="gray",
color="white",
)
return fig
def print_daily_analysis(comparison_df):
"""Print detailed daily analysis"""
print("\nDay-by-Day Analysis:")
print("=" * 100)
# Format the data for tabulate
table_data = []
for _, row in comparison_df.iterrows():
table_data.append(
[
row["Date"],
row["Day"],
f"{row['Actual_Return']:+.2f}%",
f"{row['Historical_Average']:+.2f}%",
f"{row['Difference']:+.2f}%",
row["Performance"],
]
)
headers = [
"Date",
"Day",
"Actual Return",
"Historical Avg",
"Difference",
"Performance",
]
print(tabulate(table_data, headers=headers, tablefmt="grid"))
def write_figure_to_file(fig, output_file):
# Add custom HTML and CSS for better responsiveness
custom_html = """
<style>
.container {
max-width: 100%;
margin: 0 auto;
padding: 20px;
}
@media (max-width: 768px) {
.js-plotly-plot {
height: 500px !important;
}
}
</style>
<div class="container">
<div id="chart"></div>
</div>
"""
# Save as standalone HTML file
fig.write_html(
output_file,
include_plotlyjs="cdn",
full_html=True,
)
logging.info(f"Plot saved as {output_file}")
def main(args):
# Load historical averages
historical_averages = load_historical_averages(args.file)
# Validate dates
try:
start_date = datetime.strptime(args.start, "%Y-%m-%d")
end_date = datetime.strptime(args.end, "%Y-%m-%d")
if start_date > end_date:
raise ValueError("Start date must be before end date")
except ValueError as e:
logging.error(f"Invalid date format: {e}")
return
# Get actual data for specified date range
sp500_data = get_sp500_data(args.start, args.end)
# Compare returns
comparison = compare_returns(sp500_data, historical_averages)
if comparison.empty:
print("No data available for comparison")
return
# Create visualization
output_file = f"sp500_comparison_{args.start[:4]}_{args.end[:4]}.html"
fig = plot_return_scatter(comparison)
if args.show_plot:
fig.show()
else:
write_figure_to_file(fig, output_file)
if __name__ == "__main__":
args = parse_args()
setup_logging(args.verbose)
main(args)