-
Notifications
You must be signed in to change notification settings - Fork 37
/
back-trader-tutorial.py
executable file
·236 lines (204 loc) · 7.22 KB
/
back-trader-tutorial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env -S uv run --quiet --script
# /// script
# dependencies = [
# "backtrader[plotting]",
# ]
# ///
"""
Backtest using RSI strategy
Usage:
To test over a range and find the best parameters:
$ py back-trader-tutorial.py | python -c "import sys; print(max((line for line in sys.stdin.read().split('\n') if 'Percent Gain' in line), key=lambda x: float(x.split('Percent Gain')[1].strip().rstrip('%'))))"
"""
import argparse
import datetime
import math
import os
import subprocess
from pathlib import Path
import backtrader as bt
def parse_arguments():
parser = argparse.ArgumentParser(description="Backtest using RSI strategy")
parser.add_argument(
"-s",
"--symbol",
type=str,
default="AAPL",
help="Stock symbol (default: AAPL)",
)
parser.add_argument(
"-t",
"--test",
action="store_true",
help="Run in test mode",
)
parser.add_argument(
"-i",
"--initial_investment",
type=float,
default=10000.0,
help="Initial investment amount (default: 10000.0)",
)
parser.add_argument(
"-sd",
"--start-date",
type=str,
default=(datetime.datetime.now() - datetime.timedelta(days=365)).strftime(
"%Y-%m-%d"
),
help="Start date for backtesting (default: one year from today)",
)
parser.add_argument(
"-ed",
"--end-date",
type=str,
default=datetime.datetime.now().strftime("%Y-%m-%d"),
help="End date for backtesting (default: today)",
)
return parser.parse_args()
# Factor to percent of investment
scale_in = {1: 0.05, 2: 0.15, 3: 0.3, 4: 0.5}
class RsiStrategy(bt.Strategy):
params = dict(
initial_investment=10000.0,
rsi_period=14,
rsi_lower=30,
rsi_upper=70,
print_log=True,
)
def __init__(self):
self.data_close = self.datas[0].close
self.order = None
self.trades_holding = 0
self.scale_in_step = 1
self.total_stocks_purchased = 0
self.number_of_trades = 0
self.rsi = bt.indicators.RSI(
self.datas[0],
period=self.params.rsi_period,
upperband=self.params.rsi_upper,
lowerband=self.params.rsi_lower,
)
def next(self):
if self.rsi[0] < self.params.rsi_lower:
emoji = "👍"
elif self.rsi[0] > self.params.rsi_upper:
emoji = "👎"
else:
emoji = "❌"
if emoji != "❌":
self.log(f"Close, {self.data_close[0]}, RSI = {self.rsi[0]:.2f} {emoji}")
# Buy
if self.scale_in_step <= len(scale_in) and self.rsi[0] < self.params.rsi_lower:
current_scale_factor = scale_in[self.scale_in_step]
scale_factor_investment = self.broker.getcash() * current_scale_factor
stocks_to_purchase = math.floor(
scale_factor_investment / self.data_close[0]
)
self.log(
f"📈 Buy Create {stocks_to_purchase:.2f} @ Close {self.data_close[0]} - RSI {self.rsi[0]}"
)
self.order = self.buy(size=stocks_to_purchase)
self.scale_in_step += 1
self.trades_holding += 1
self.total_stocks_purchased += stocks_to_purchase
self.log(
f"📰 Scale Factor: {current_scale_factor}"
f"🟠 Investment: {scale_factor_investment:.2f}"
f"🟠 Total Stocks Purchased {self.total_stocks_purchased:.2f}"
f"🟠 Broker Cash: {self.broker.getcash():.2f}"
)
# Sell
if self.trades_holding > 0 and self.rsi[0] > self.params.rsi_upper:
self.log(f"📉 Sell Create, Close {self.data_close[0]} - RSI {self.rsi[0]}")
self.order = self.sell(size=self.total_stocks_purchased)
self.trades_holding = 0
self.scale_in_step = 1
self.total_stocks_purchased = 0
def notify_order(self, order):
if order.status in [order.Submitted, order.Accepted]:
return
if order.status in [order.Completed]:
if order.isbuy():
self.log(
f"BUY Executed, Price: {order.executed.price}, Cost: {order.executed.value}, Comm: {order.executed.comm:.2f}"
)
elif order.issell():
self.log(
f"SELL Executed, Price: {order.executed.price}, Cost: {order.executed.value}, Comm: {order.executed.comm:.2f}"
)
elif order.status in [order.Canceled, order.Margin, order.Rejected]:
self.log(
f"⚠️ Order Canceled/Margin/Rejected - {order.status}", do_print=True
)
self.order = None
self.number_of_trades += 1
def notify_trade(self, trade):
if not trade.isclosed:
return
self.log(f"OPERATION PROFIT, GROSS: {trade.pnl:.2f}, NET: {trade.pnlcomm:.2f}")
def stop(self):
percent_gain = (self.broker.getvalue() / self.params.initial_investment) - 1
self.log(
f"(RSI Period {self.params.rsi_period:2d})"
f" ⚫ (Upper {self.params.rsi_upper} : Lower {self.params.rsi_lower})"
f" ⚫ Ending Value {self.broker.getvalue():.2f}"
f" ⚫ Number of Trades {self.number_of_trades}"
f" ⚫ Percent Gain {percent_gain:.2%}",
do_print=True,
)
def log(self, txt, dt=None, do_print=False):
if self.params.print_log or do_print:
dt = dt or self.datas[0].datetime.date(0)
print(f"{dt.isoformat()}, {txt}", flush=True)
def main(args):
cerebro = bt.Cerebro()
initial_investment = args.initial_investment
if args.test:
cerebro.optstrategy(
RsiStrategy,
initial_investment=initial_investment,
rsi_period=range(4, 21),
rsi_lower=range(5, 21),
rsi_upper=range(75, 91),
)
else:
cerebro.addstrategy(
RsiStrategy,
initial_investment=initial_investment,
rsi_period=10,
rsi_lower=20,
rsi_upper=90,
)
data = load_data(args.symbol, args.start_date, args.end_date)
cerebro.adddata(data)
cerebro.broker.setcash(initial_investment)
print("Starting Portfolio Value: %.2f" % cerebro.broker.getvalue())
cerebro.run()
print("Final Portfolio Value: %.2f" % cerebro.broker.getvalue())
if not args.test:
cerebro.plot()
def load_data(symbol: str, start_date: str, end_date: str):
data_path = Path.cwd().joinpath("output").joinpath(f"{symbol}.csv")
if not os.path.isfile(data_path):
subprocess.run(
[
"python3",
"download_stocks_ohlcv.py",
"-t",
symbol,
"--back-period-in-years",
"10",
]
)
start_date = datetime.datetime.strptime(start_date, "%Y-%m-%d")
end_date = datetime.datetime.strptime(end_date, "%Y-%m-%d")
data = bt.feeds.YahooFinanceCSVData(
dataname=data_path,
fromdate=start_date,
todate=end_date,
)
return data
if __name__ == "__main__":
args = parse_arguments()
main(args)