forked from pydata/xarray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert.py
208 lines (171 loc) · 6.46 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""Functions for converting to and from xarray objects
"""
from collections import Counter
import numpy as np
from xarray.coding.times import CFDatetimeCoder, CFTimedeltaCoder
from xarray.conventions import decode_cf
from xarray.core import duck_array_ops
from xarray.core.dataarray import DataArray
from xarray.core.dtypes import get_fill_value
from xarray.core.pycompat import array_type
iris_forbidden_keys = {
"standard_name",
"long_name",
"units",
"bounds",
"axis",
"calendar",
"leap_month",
"leap_year",
"month_lengths",
"coordinates",
"grid_mapping",
"climatology",
"cell_methods",
"formula_terms",
"compress",
"missing_value",
"add_offset",
"scale_factor",
"valid_max",
"valid_min",
"valid_range",
"_FillValue",
}
cell_methods_strings = {
"point",
"sum",
"maximum",
"median",
"mid_range",
"minimum",
"mean",
"mode",
"standard_deviation",
"variance",
}
def encode(var):
return CFTimedeltaCoder().encode(CFDatetimeCoder().encode(var.variable))
def _filter_attrs(attrs, ignored_attrs):
"""Return attrs that are not in ignored_attrs"""
return {k: v for k, v in attrs.items() if k not in ignored_attrs}
def _pick_attrs(attrs, keys):
"""Return attrs with keys in keys list"""
return {k: v for k, v in attrs.items() if k in keys}
def _get_iris_args(attrs):
"""Converts the xarray attrs into args that can be passed into Iris"""
# iris.unit is deprecated in Iris v1.9
import cf_units
args = {"attributes": _filter_attrs(attrs, iris_forbidden_keys)}
args.update(_pick_attrs(attrs, ("standard_name", "long_name")))
unit_args = _pick_attrs(attrs, ("calendar",))
if "units" in attrs:
args["units"] = cf_units.Unit(attrs["units"], **unit_args)
return args
# TODO: Add converting bounds from xarray to Iris and back
def to_iris(dataarray):
"""Convert a DataArray into a Iris Cube"""
# Iris not a hard dependency
import iris
from iris.fileformats.netcdf import parse_cell_methods
dim_coords = []
aux_coords = []
for coord_name in dataarray.coords:
coord = encode(dataarray.coords[coord_name])
coord_args = _get_iris_args(coord.attrs)
coord_args["var_name"] = coord_name
axis = None
if coord.dims:
axis = dataarray.get_axis_num(coord.dims)
if coord_name in dataarray.dims:
try:
iris_coord = iris.coords.DimCoord(coord.values, **coord_args)
dim_coords.append((iris_coord, axis))
except ValueError:
iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
aux_coords.append((iris_coord, axis))
else:
iris_coord = iris.coords.AuxCoord(coord.values, **coord_args)
aux_coords.append((iris_coord, axis))
args = _get_iris_args(dataarray.attrs)
args["var_name"] = dataarray.name
args["dim_coords_and_dims"] = dim_coords
args["aux_coords_and_dims"] = aux_coords
if "cell_methods" in dataarray.attrs:
args["cell_methods"] = parse_cell_methods(dataarray.attrs["cell_methods"])
masked_data = duck_array_ops.masked_invalid(dataarray.data)
cube = iris.cube.Cube(masked_data, **args)
return cube
def _iris_obj_to_attrs(obj):
"""Return a dictionary of attrs when given a Iris object"""
attrs = {"standard_name": obj.standard_name, "long_name": obj.long_name}
if obj.units.calendar:
attrs["calendar"] = obj.units.calendar
if obj.units.origin != "1" and not obj.units.is_unknown():
attrs["units"] = obj.units.origin
attrs.update(obj.attributes)
return {k: v for k, v in attrs.items() if v is not None}
def _iris_cell_methods_to_str(cell_methods_obj):
"""Converts a Iris cell methods into a string"""
cell_methods = []
for cell_method in cell_methods_obj:
names = "".join(f"{n}: " for n in cell_method.coord_names)
intervals = " ".join(
f"interval: {interval}" for interval in cell_method.intervals
)
comments = " ".join(f"comment: {comment}" for comment in cell_method.comments)
extra = " ".join([intervals, comments]).strip()
if extra:
extra = f" ({extra})"
cell_methods.append(names + cell_method.method + extra)
return " ".join(cell_methods)
def _name(iris_obj, default="unknown"):
"""Mimics `iris_obj.name()` but with different name resolution order.
Similar to iris_obj.name() method, but using iris_obj.var_name first to
enable roundtripping.
"""
return iris_obj.var_name or iris_obj.standard_name or iris_obj.long_name or default
def from_iris(cube):
"""Convert a Iris cube into an DataArray"""
import iris.exceptions
name = _name(cube)
if name == "unknown":
name = None
dims = []
for i in range(cube.ndim):
try:
dim_coord = cube.coord(dim_coords=True, dimensions=(i,))
dims.append(_name(dim_coord))
except iris.exceptions.CoordinateNotFoundError:
dims.append(f"dim_{i}")
if len(set(dims)) != len(dims):
duplicates = [k for k, v in Counter(dims).items() if v > 1]
raise ValueError(f"Duplicate coordinate name {duplicates}.")
coords = {}
for coord in cube.coords():
coord_attrs = _iris_obj_to_attrs(coord)
coord_dims = [dims[i] for i in cube.coord_dims(coord)]
if coord_dims:
coords[_name(coord)] = (coord_dims, coord.points, coord_attrs)
else:
coords[_name(coord)] = ((), coord.points.item(), coord_attrs)
array_attrs = _iris_obj_to_attrs(cube)
cell_methods = _iris_cell_methods_to_str(cube.cell_methods)
if cell_methods:
array_attrs["cell_methods"] = cell_methods
# Deal with iris 1.* and 2.*
cube_data = cube.core_data() if hasattr(cube, "core_data") else cube.data
# Deal with dask and numpy masked arrays
dask_array_type = array_type("dask")
if isinstance(cube_data, dask_array_type):
from dask.array import ma as dask_ma
filled_data = dask_ma.filled(cube_data, get_fill_value(cube.dtype))
elif isinstance(cube_data, np.ma.MaskedArray):
filled_data = np.ma.filled(cube_data, get_fill_value(cube.dtype))
else:
filled_data = cube_data
dataarray = DataArray(
filled_data, coords=coords, name=name, attrs=array_attrs, dims=dims
)
decoded_ds = decode_cf(dataarray._to_temp_dataset())
return dataarray._from_temp_dataset(decoded_ds)