-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemory.py
34 lines (28 loc) · 1.22 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
class ReplayBuffer:
def __init__(self, input_shape, buffer_size=int(1e6), batch_size=64):
self.buffer_size = int(buffer_size)
self.batch_size = batch_size
self.states = np.zeros((self.buffer_size, *input_shape))
self.next_states = np.zeros((self.buffer_size, *input_shape))
self.actions = np.zeros((self.buffer_size))
self.rewards = np.zeros((self.buffer_size))
self.dones = np.zeros((self.buffer_size), dtype=bool)
self.mem_counter = 0
def store_transition(self, state, action, reward, next_state, done):
i = self.mem_counter % self.buffer_size
self.states[i] = state
self.actions[i] = action
self.rewards[i] = reward
self.next_states[i] = next_state
self.dones[i] = done
self.mem_counter += 1
def sample(self):
mem_max = min(self.mem_counter, self.buffer_size)
batch = np.random.choice(mem_max, self.batch_size, replace=False)
states = self.states[batch]
actions = self.actions[batch]
rewards = self.rewards[batch]
next_states = self.next_states[batch]
dones = self.dones[batch]
return states, actions, rewards, next_states, dones