Spatial-Temporal Mitosis Detection in Phase-Contrast Microscopy via Likelihood Map Estimation by 3DCNN
- System (tested on Ubuntu 18.04LTS)
- NVIDIA driver 430
- Python>=3.6
- PyTorch>=0.4
- MATLAB
Python setting
conda env create -f=requirement.yml
conda activate pytorch
docker build ./docker
sh run_docker.sh
CVPR 2019 Contest on Mitosis Detection in Phase Contrast Microscopy Image Sequences
To use dataset, prease follow the guideline. Now the dataset line was expired. If you want to use the dataset, please ask the contest organizers directly. https://ieeexplore.ieee.org/abstract/document/9328484?casa_token=XLj19UfXiEwAAAAA:TdwkxaQwKywNwzsnDje3GgSL6960XqGUxNVLLXu2RBpWyb85DTy2f1TEqJJYYa4E9SmVjrfEzg
- Candidate path image extraction based on the brightness
matlab -nodesktop -nosplash -r "candidate_extractor(dataset_directory, './output/')"
- Generate ground truth from candidate
python generate_ground_truth.py
- Train V-Net
python train.py
- Prediction by V-Net
python predict.py
If you use this code for your research, please cite:
@article{nishimura2020spatial,
title={Spatial-Temporal Mitosis Detection in Phase-Contrast Microscopy via Likelihood Map Estimation by 3DCNN},
author={Nishimura, Kazuya and Bise, Ryoma},
journal={arXiv preprint arXiv:2004.12531},
year={2020}
}