-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
56 lines (45 loc) · 2.12 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn as nn
import torch.nn.functional as F
def Log(x):
"""
Log trick for numerical stability
"""
lt = torch.log(1+torch.exp(-torch.abs(x))) + torch.max(x, torch.tensor([0.]).cuda())
return lt
class DualClasswiseLoss(nn.Module):
def __init__(self, num_classes, feat_dim, inner_param, sigma=0.25, use_gpu=True):
super(DualClasswiseLoss, self).__init__()
self.num_classes = num_classes
self.feat_dim = feat_dim
self.use_gpu = use_gpu
self.sigma = sigma
self.inner_param = inner_param
self.centers = nn.Parameter(torch.randn(self.num_classes, self.feat_dim).cuda())
def forward(self, x, labels):
"""
Args:
x: shape of (batch_size, feat_dim).
labels: shape of (batch_size, ) or (batch_size, 1)
"""
# compute L_1 with single constraint.
batch_size = x.size(0)
distmat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(batch_size, self.num_classes) + \
torch.pow(self.centers, 2).sum(dim=1, keepdim=True).expand(self.num_classes, batch_size).t()
distmat.addmm_(x, self.centers.t(), beta=1, alpha=-2)
dist_div = torch.exp(-0.5*self.sigma*distmat)/(torch.exp(-0.5*self.sigma*distmat).sum(dim=1, keepdim=True) + 1e-6)
classes = torch.arange(self.num_classes).long()
if self.use_gpu:
classes = classes.cuda()
labels = labels.view(-1, 1).expand(batch_size, self.num_classes)
mask = labels.eq(classes.expand(batch_size, self.num_classes))
dist_log = torch.log(dist_div+1e-6) * mask.float()
loss = -dist_log.sum() / batch_size
# compute L_2 with inner constraint on class centers.
centers_norm = F.normalize(self.centers, dim=1)
theta_x = 0.5 * self.feat_dim * centers_norm.mm(centers_norm.t())
mask = torch.eye(self.num_classes, self.num_classes).bool().cuda()
theta_x.masked_fill_(mask, 0)
loss_iner = Log(theta_x).sum() / (self.num_classes*(self.num_classes-1))
loss_full = loss + self.inner_param * loss_iner
return loss_full