forked from ajbrock/Neural-Photo-Editor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_IAN.py
202 lines (141 loc) · 6.28 KB
/
sample_IAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import imp
import time
import logging
import itertools
import os
import numpy as np
from path import Path
import theano
import theano.tensor as T
from theano.tensor.opt import register_canonicalize
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
import lasagne
from lasagne.layers import SliceLayer as SL
import GANcheckpoints
from collections import OrderedDict
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from fuel.datasets import CelebA
from discgen_utils import plot_image_grid
## Utilities:
# to_tanh: transforms an array in the range [0,255] to the range [-1,1]
# from_tanh: transforms an array in the range [-1,1] to the range[0,255]
def to_tanh(input):
return 2.0*(input/255.0)-1.0
# return input/255.0
def from_tanh(input):
return 255.0*(input+1)/2.0
# return 255.0*input
### Make Training Functions Method
# This function defines and compiles the computational graphs that define the training, validation, and test functions.
def make_training_functions(cfg,model):
# Define input tensors
# Tensor axes are batch-channel-dim1-dim2
# Image Input
X = T.TensorType('float32', [False]*4)('X')
# Latent Input, for providing latent values from the main function
Z = T.TensorType('float32', [False]*2)('Z') # Latents
# Input layer
l_in = model['l_in']
# Output layer
l_out = model['l_out']
# Latent Layer
l_Z = model['l_Z']
# IAF latent layer:
l_Z_IAF = model['l_Z_IAF']
# Means
l_mu = model['l_mu']
# Log-sigmas
l_ls = model['l_ls']
# IAF Means
l_IAF_mu = model['l_IAF_mu']
# IAF logsigmas
l_IAF_ls = model['l_IAF_ls']
# Introspective loss layers
l_introspect = model['l_introspect']
# Adversarial Discriminator
l_discrim = model['l_discrim']
# Sample function
sample = theano.function([Z],lasagne.layers.get_output(l_out,{l_Z_IAF:Z},deterministic=True),on_unused_input='warn')
sampleZ= theano.function([Z],lasagne.layers.get_output(l_out,{l_Z:Z},deterministic=True),on_unused_input='warn')
# Inference Function--Infer non-IAF_latents given an input X
Zfn = theano.function([X],lasagne.layers.get_output(l_Z_IAF,{l_in:X},deterministic=True),on_unused_input='warn')
# IAF function--Infer IAF latents given a latent input Z
Z_IAF_fn = theano.function([Z],lasagne.layers.get_output(l_Z,{l_Z_IAF:Z},deterministic=True),on_unused_input='warn')
# Dictionary of Theano Functions
# tfuncs = {'update_iter':update_iter,
tfuncs = {'sample': sample,
'sampleZ': sampleZ,
'Zfn' : Zfn,
'Z_IAF_fn': Z_IAF_fn
}
# Dictionary of Theano Variables
tvars = {'X' : X,
'Z' : Z}
return tfuncs, tvars, model
# Data Loading Function
#
# This function interfaces with a Fuel dataset and returns numpy arrays containing the requested data
def data_loader(cfg,set,offset=0,shuffle=False,seed=42):
# Define chunk size
chunk_size = cfg['batch_size']*cfg['batches_per_chunk']
np.random.seed(seed)
index = np.random.permutation(set.num_examples-offset) if shuffle else np.asarray(range(set.num_examples-offset))
# Open Dataset
set.open()
# Loop across all data
for i in xrange(set.num_examples//chunk_size):
yield to_tanh(np.float32(set.get_data(request = list(index[range(offset+chunk_size*i,offset+chunk_size*(i+1))]))[0]))
# Close dataset
set.close(state=None)
# Main Function
def main(args):
# Load Config Module from source file
config_module = imp.load_source('config', args.config_path)
# Get configuration parameters
cfg = config_module.cfg
# Define name of npz file to which the model parameters will be saved
weights_fname = str(args.config_path)[:-3]+'.npz'
model = config_module.get_model(interp=False)
print('Compiling theano functions...')
# Compile functions
tfuncs, tvars,model = make_training_functions(cfg,model)
# Test set for interpolations
test_set = CelebA('64',('test',),sources=('features',))
# Loop across epochs
offset = True
params = list(set(lasagne.layers.get_all_params(model['l_out'],trainable=True)+\
lasagne.layers.get_all_params(model['l_discrim'],trainable=True)+\
[x for x in lasagne.layers.get_all_params(model['l_out'])+\
lasagne.layers.get_all_params(model['l_discrim']) if x.name[-4:]=='mean' or x.name[-7:]=='inv_std']))
metadata = GANcheckpoints.load_weights(weights_fname, params)
epoch = args.epoch if args.epoch>0 else metadata['epoch'] if 'epoch' in metadata else 0
print('loading weights, epoch is '+str(epoch))
model['l_IAF_mu'].reset("Once")
model['l_IAF_ls'].reset("Once")
# Open Test Set
test_set.open()
np.random.seed(epoch*42+5)
# Generate Random Samples, averaging latent vectors across masks
samples = np.uint8(from_tanh(tfuncs['sample'](np.random.randn(27,cfg['num_latents']).astype(np.float32))))
np.random.seed(epoch*42+5)
# Get Reconstruction/Interpolation Endpoints
endpoints = np.uint8(test_set.get_data(request = list(np.random.choice(test_set.num_examples,6,replace=False)))[0])
# Get reconstruction latents
Ze = np.asarray(tfuncs['Zfn'](to_tanh(np.float32(endpoints))))
# Get Interpolant Latents
Z = np.asarray([Ze[2 * i, :] * (1 - j) + Ze[2 * i + 1, :] * j for i in range(3) for j in [x/6.0 for x in range(7)]],dtype=np.float32)
# Get all images
images = np.append(samples,np.concatenate([np.insert(endpoints[2*i:2*(i+1),:,:,:],1,np.uint8(from_tanh(tfuncs['sample'](Z[7*i:7*(i+1),:]))),axis=0) for i in range(3)],axis=0),axis=0)
# Plot images
plot_image_grid(images,6,9,'pics/'+str(args.config_path)[:-3]+'_sample'+str(epoch)+'.png')
# Close test set
test_set.close(state=None)
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config_path', type=Path, help='config .py file')
parser.add_argument('--epoch',type=int,default=0)
args = parser.parse_args()
main(args)