-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdevfestpdf.py
111 lines (88 loc) · 3.68 KB
/
devfestpdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
import os
import chainlit as cl
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chat_models import ChatVertexAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from io import BytesIO
import PyPDF2
from langchain.llms import VertexAI
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'})
llm = VertexAI()
@cl.on_chat_start
async def init():
files = None
# Wait for the user to upload a file
while files == None:
files = await cl.AskFileMessage(
content="Please upload a pdf file to begin!", accept=["application/pdf"], max_size_mb=50,
).send()
file = files[0]
msg = cl.Message(content=f"Processing `{file.name}`...")
await msg.send()
if file.type != "application/pdf":
raise TypeError("Only PDF files are supported")
pdf_stream = BytesIO(file.content)
pdf = PyPDF2.PdfReader(pdf_stream)
pdf_text = ""
for page in pdf.pages:
pdf_text += page.extract_text()
# texts = text_splitter.create_documents(pdf_text)
texts = text_splitter.create_documents([pdf_text])
for i, text in enumerate(texts): text.metadata["source"] = f"{i}-pl"
# Create a Chroma vector store
docsearch = Chroma.from_documents(texts, embeddings)
# Create a chain that uses the Chroma vector store
chain = RetrievalQA.from_chain_type(
llm,
chain_type="stuff",
return_source_documents=True,
retriever=docsearch.as_retriever(),
)
# Save the metadata and texts in the user session
metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
cl.user_session.set("metadatas", metadatas)
cl.user_session.set("texts", texts)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message):
chain = cl.user_session.get("chain") # type: RetrievalQAWithSourcesChain
cb = cl.AsyncLangchainCallbackHandler(
stream_final_answer=True, answer_prefix_tokens=["FINAL", "ANSWER"]
)
cb.answer_reached = True
res = await chain.acall(message, callbacks=[cb])
answer = res["result"]
source_documents = res["source_documents"]
source_elements = []
# Get the metadata and texts from the user session
metadatas = cl.user_session.get("metadatas")
all_sources = [m["source"] for m in metadatas]
texts = cl.user_session.get("texts")
if source_documents:
found_sources = []
# Add the sources to the message
for source_idx, source in enumerate(source_documents):
# Get the index of the source
source_name = f"source_{source_idx}"
found_sources.append(source_name)
# Create the text element referenced in the message
source_elements.append(cl.Text(content=str(source.page_content).strip(), name=source_name))
if found_sources:
answer += f"\nSources: {', '.join(found_sources)}"
else:
answer += "\nNo sources found"
if cb.has_streamed_final_answer:
cb.final_stream.content = answer
cb.final_stream.elements = source_elements
await cb.final_stream.update()
else:
await cl.Message(content=answer,
elements=source_elements
).send()