π Data Versioning | Quality Monitoring | Multi-Format Support | Optimized Queries
TimeStream is a modern data lakehouse solution that combines robust data versioning, quality monitoring, and optimized query performance. It provides a complete ETL pipeline with support for multiple data formats and automated quality checks.
- π Git-Like Data Versioning
- Branch-based development
- Atomic commits
- Time travel queries
- π‘οΈ Data Quality
- Automated validation with Great Expectations
- Schema enforcement
- Quality reports generation
- π Performance Optimization
- Z-ordered indexing
- Intelligent partitioning
- Query optimization
- π Multi-Format Support
- Parquet, Delta Lake, CSV, JSON
- ORC and Avro compatibility
- Format conversion utilities
- π Snapshot Management
- Automatic cleanup
- Retention policies
- Version history
- π Monitoring & Metrics
- Performance tracking
- Quality metrics
- Usage analytics
Component | Technology | Purpose |
---|---|---|
Storage | MinIO | S3-compatible object storage |
Table Format | Apache Iceberg | Versioned table management |
Version Control | Nessie | Git-like data versioning |
Processing | Apache Spark | Distributed computation |
Quality | Great Expectations | Data validation |
Format Support | Delta Lake | ACID transactions |
Analytics | Jupyter | Data exploration |
TimeStream/
βββ etl/
β βββ ingest.py # Data ingestion
β βββ transform.py # Data transformation
β βββ validate.py # Quality validation
β βββ data_converter.py # Format conversion
βββ config/
β βββ iceberg_config.json
β βββ nessie_config.json
βββ docker-compose.yml
- Docker and Docker Compose
- Python 3.8+
- 8GB+ RAM
-
Clone Repository
git clone https://github.com/your-org/TimeStream.git cd TimeStream
-
Install Dependencies
pip install -r requirements.txt
-
Start Services
docker-compose up -d
-
Initialize Components
great_expectations init
python etl/ingest.py
- Supports multiple formats
- Parallel processing
- Progress monitoring
python etl/transform.py
- Optimized processing
- Z-ordering
- Partition management
python etl/validate.py
- Quality checks
- Schema validation
- Error reporting
python etl/data_converter.py
- Multi-format support
- Delta Lake integration
- Optimized conversion
{
"endpoint": "localhost:9000",
"access_key": "minioadmin",
"secret_key": "minioadmin"
}
{
"warehouse": "s3://timestream/",
"catalog": "nessie"
}
- Access reports:
http://localhost:8080/great_expectations
- View validation results
- Track quality metrics
- Spark UI:
http://localhost:8080
- MinIO Console:
http://localhost:9001
- Nessie API:
http://localhost:19120
- Snapshot cleanup:
python etl/snapshot_cleanup.py
- Version history
- Storage optimization
- Create feature branch
- Develop and test transformations
- Validate data quality
- Merge to main branch
- Use appropriate partitioning
- Enable Z-ordering for spatial data
- Configure proper retention policies
- Define comprehensive expectations
- Monitor validation results
- Address quality issues promptly
- Service connectivity
- Resource constraints
- Version conflicts
- Check service logs
- Verify configurations
- Ensure sufficient resources
- Fork the repository
- Create feature branch
- Submit pull request
Apache License 2.0
- GitHub Issues
- Documentation
- Community Forums