-
Notifications
You must be signed in to change notification settings - Fork 0
/
version2.py
764 lines (668 loc) · 35.2 KB
/
version2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
import re
import traceback
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, ops
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from ultralytics.utils.torch_utils import smart_inference_mode
from ultralytics.utils.files import increment_path
from ultralytics.utils.checks import check_imshow
from ultralytics.cfg import get_cfg
# from ultralytics.yolo.engine.predictor import BasePredictor
# from ultralytics.yolo.engine.results import Results
# from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, SETTINGS, callbacks, ops
# from ultralytics.yolo.utils.plotting import Annotator, colors, save_one_box
# from ultralytics.yolo.utils.torch_utils import smart_inference_mode
# from ultralytics.yolo.utils.files import increment_path
# from ultralytics.yolo.utils.checks import check_imshow
# from ultralytics.yolo.cfg import get_cfg
from PySide6.QtWidgets import QApplication, QMainWindow, QFileDialog, QMenu
from PySide6.QtGui import QImage, QPixmap, QColor
from PySide6.QtCore import QTimer, QThread, Signal, QObject, QPoint, Qt
from ui.CustomMessageBox import MessageBox
from ui.home import Ui_MainWindow
from ui import resources_rc
from UIFunctions import *
from collections import defaultdict
from pathlib import Path
from utils.capnums import Camera
from utils.rtsp_win import Window
import numpy as np
import time
import json
import torch
import sys
import cv2
import os
class YoloPredictor(BasePredictor, QObject):
yolo2main_pre_img = Signal(np.ndarray) # raw image signal
yolo2main_res_img = Signal(np.ndarray) # test result signal
yolo2main_status_msg = Signal(str) # Detecting/pausing/stopping/testing complete/error reporting signal
yolo2main_fps = Signal(str) # fps
yolo2main_labels = Signal(dict) # Detected target results (number of each category)
yolo2main_progress = Signal(int) # Completeness
yolo2main_class_num = Signal(int) # Number of categories detected
yolo2main_target_num = Signal(int) # Targets detected
def __init__(self, cfg=DEFAULT_CFG, overrides=None):
super(YoloPredictor, self).__init__()
QObject.__init__(self)
self.args = get_cfg(cfg, overrides)
project = self.args.project or Path(SETTINGS['runs_dir']) / self.args.task
name = f'{self.args.mode}'
self.save_dir = increment_path(Path(project) / name, exist_ok=self.args.exist_ok)
self.done_warmup = False
if self.args.show:
self.args.show = check_imshow(warn=True)
# GUI args
self.used_model_name = None # The detection model name to use
self.new_model_name = None # Models that change in real time
self.source = '' # input source
self.stop_dtc = False # Termination detection
self.continue_dtc = True # pause
self.save_res = False # Save test results
self.save_txt = False # save label(txt) file
self.iou_thres = 0.45 # iou
self.conf_thres = 0.25 # conf
self.speed_thres = 10 # delay, ms
self.labels_dict = {} # return a dictionary of results
self.progress_value = 0 # progress bar
# Usable if setup is done
self.model = None
self.data = self.args.data # data_dict
self.imgsz = None
self.device = None
self.dataset = None
self.vid_path, self.vid_writer = None, None
self.annotator = None
self.data_path = None
self.source_type = None
self.batch = None
self.callbacks = defaultdict(list, callbacks.default_callbacks) # add callbacks
callbacks.add_integration_callbacks(self)
# main for detect
@smart_inference_mode()
def run(self):
try:
if self.args.verbose:
LOGGER.info('')
# set model
self.yolo2main_status_msg.emit('Loding Model...')
if not self.model:
self.setup_model(self.new_model_name)
self.used_model_name = self.new_model_name
# set source
self.setup_source(self.source if self.source is not None else self.args.source)
# Check save path/label
if self.save_res or self.save_txt:
(self.save_dir / 'labels' if self.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True)
# warmup model
if not self.done_warmup:
self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz))
self.done_warmup = True
self.seen, self.windows, self.dt, self.batch = 0, [], (ops.Profile(), ops.Profile(), ops.Profile()), None
# start detection
# for batch in self.dataset:
count = 0 # run location frame
start_time = time.time() # used to calculate the frame rate
batch = iter(self.dataset)
try:
while True:
# Termination detection
if self.stop_dtc:
for writer in self.vid_writer.values():
if isinstance(writer, cv2.VideoWriter):
writer.release() # 释放 video writer
self.vid_writer.clear() # 清空字典
self.yolo2main_status_msg.emit('Detection terminated!')
break
# Change the model midway
if self.used_model_name != self.new_model_name:
# self.yolo2main_status_msg.emit('Change Model...')
self.setup_model(self.new_model_name)
self.used_model_name = self.new_model_name
# pause switch
if self.continue_dtc:
# time.sleep(0.001)
self.yolo2main_status_msg.emit('Detecting...')
batch = next(self.dataset) # next data
self.batch = batch
# print('type(batch):',type(batch)) # <class 'tuple'>
# print('lenth of batch:',len(batch)) # 3
paths, im0s, s = batch # 正确解包前三个元素
paths = ' '.join(paths) if isinstance(paths, list) else paths # 将路径列表转换为字符串
s = ' '.join(s) if isinstance(s, list) else s # 将s列表转换为字符串
vid_cap = self.dataset.cap # 假设vid_cap不在batch中,并将其设置为None或适当的默认值
print('vid_cap:', vid_cap) # None
im0s = np.array(im0s) # 将列表转换为numpy数组
print('im0s.shape :', im0s.shape) # (1, 640, 640, 3)
# Preprocess
with self.dt[0]:
im = self.preprocess(im0s) # (1, 3, 640, 640)
print('im.shape :', im.shape) # (1, 640, 640, 3)
for idx, im0s in enumerate(im0s):
print('im0s.shape :', im0s.shape) # (640, 640, 3)
if im0s.shape[0] == 1:
im0s = np.squeeze(im0s, axis=0)
visualize = increment_path(self.save_dir / Path(paths).stem,
mkdir=True) if self.args.visualize else False
# Calculation completion and frame rate (to be optimized)
count += 1 # frame count +1
if vid_cap:
all_count = vid_cap.get(cv2.CAP_PROP_FRAME_COUNT) # total frames
else:
all_count = 1
self.progress_value = int(count / all_count * 1000) # progress bar(0~1000)
if count % 5 == 0 and count >= 5: # Calculate the frame rate every 5 frames
self.yolo2main_fps.emit(str(int(5 / (time.time() - start_time))))
start_time = time.time()
# inference
with self.dt[1]:
preds = self.model(im, augment=self.args.augment, visualize=visualize)
# with profilers[1]:
# preds = self.inference(im, self.args.augment,visualize)
# if self.args.embed:
# yield from [preds] if isinstance(preds,
# torch.Tensor) else preds # yield embedding tensors
# continue
# postprocess
with self.dt[2]:
self.results = self.postprocess(preds, im, im0s)
# Visualize, save, write results
n = len(im)
# print('shape im', im.shape)
# print('len im', len(im))
# print('shape im0s', im0s.shape)
# print('len im0s', len(im0s))
for i in range(n):
self.seen += 1
self.results[i].speed = {
'preprocess': self.dt[0].dt * 1E3 / n,
'inference': self.dt[1].dt * 1E3 / n,
'postprocess': self.dt[2].dt * 1E3 / n
}
p, im0 = (
paths[i], im0s[i].copy()) if self.source_type.stream or self.source_type.from_img \
else (paths, im0s.copy())
p = Path(p) # the source dir
if self.args.verbose or self.args.save or self.args.save_txt or self.args.show:
label_str = self.write_results(i, Path(paths[i]), im, im0, s)
# labels and nums dict
class_nums = 0
target_nums = 0
self.labels_dict = {}
if 'no detections' in label_str:
pass
else:
for ii in label_str.split(',')[:-1]:
nums, label_name = ii.split('~')
self.labels_dict[label_name] = int(nums)
target_nums += int(nums)
class_nums += 1
# save img or video result
if self.save_res:
self.save_preds(vid_cap, i, str(self.save_dir / p.name))
# print('results im0',im0.shape)
# print('results im0s',im0s.shape)
# Send test results
self.yolo2main_res_img.emit(im0) # after detection
self.yolo2main_pre_img.emit(
im0s if isinstance(im0s, np.ndarray) else im0s[0]) # Before testing
# self.yolo2main_labels.emit(self.labels_dict) # webcam need to change the def write_results
self.yolo2main_class_num.emit(class_nums)
self.yolo2main_target_num.emit(target_nums)
if self.speed_thres != 0:
time.sleep(self.speed_thres / 1000) # delay , ms
self.yolo2main_progress.emit(self.progress_value) # progress bar
# Detection completed
if count + 1 >= all_count:
for writer in self.vid_writer.values():
if isinstance(writer, cv2.VideoWriter):
writer.release() # 释放 video writer
self.vid_writer.clear() # 清空字典
self.yolo2main_status_msg.emit('Detection completed')
break
except Exception as e:
print(f"Error on line {sys.exc_info()[-1].tb_lineno}: {str(e)}")
print(traceback.format_exc())
except Exception as e:
pass
print(e)
self.yolo2main_status_msg.emit('%s' % e)
def get_annotator(self, img):
return Annotator(img, line_width=3, example=str(self.model.names))
def postprocess(self, preds, img, orig_img):
### important
preds = ops.non_max_suppression(preds,
self.conf_thres,
self.iou_thres,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
classes=self.args.classes)
results = []
for i, pred in enumerate(preds):
orig_img = orig_img[i] if isinstance(orig_img, list) else orig_img
shape = orig_img.shape
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()
path, _, _ = self.batch
img_path = path[i] if isinstance(path, list) else path
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
# print(results)
return results
# def write_results(self, idx, results, batch):
def write_results(self, idx, p, im, im0, s):
# p, im, im0 = batch
# print('result shape of im:',im.shape) # [1, 3, 640, 640])
# im0 = np.stack((im[0][2], im[0][1], im[0][0]), axis=-1)
# print('result shape of im0:',im0.shape) # (640, 640, 3)
log_string = ''
if len(im.shape) == 3:
im = im[None] # expand for batch dim
self.seen += 1
imc = im0.copy() if self.args.save_crop else im0
if self.source_type.stream or self.source_type.from_img: # batch_size >= 1 # attention
log_string += f'{idx}: '
frame = self.dataset.count
else:
frame = getattr(self.dataset, 'frame', 0)
self.data_path = p
self.txt_path = str(self.save_dir / 'labels' / p.stem) + ('' if self.dataset.mode == 'image' else f'_{frame}')
# log_string += '%gx%g ' % im.shape[2:] # !!! don't add img size~
self.annotator = self.get_annotator(im0)
det = self.results[idx].boxes # TODO: make boxes inherit from tensors
# print('det:',det)
# print('len of det:',len(det))
if len(det) == 0:
return f'{log_string}(no detections), ' # if no, send this~~
for c in det.cls.unique():
n = (det.cls == c).sum() # detections per class
log_string += f"{n}~{self.model.names[int(c)]}," # {'s' * (n > 1)}, " # don't add 's'
# now log_string is the classes 👆
# write
for d in reversed(det):
cls, conf = d.cls.squeeze(), d.conf.squeeze()
if self.save_txt: # Write to file
line = (cls, *(d.xywhn.view(-1).tolist()), conf) \
if self.args.save_conf else (cls, *(d.xywhn.view(-1).tolist())) # label format
with open(f'{self.txt_path}.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if self.save_res or self.args.save_crop or self.args.show or True: # Add bbox to image(must)
c = int(cls) # integer class
name = f'id:{int(d.id.item())} {self.model.names[c]}' if d.id is not None else self.model.names[c]
label = f'{name} {conf:.2f}'
# 在绘制前打印信息
print(f'准备绘制目标框和标签,目标类别为: {label}')
self.annotator.box_label(d.xyxy.squeeze(), label, color=colors(c, True))
# 在绘制后打印信息
print(f'已绘制目标框和标签: {label}')
if self.args.save_crop:
save_one_box(d.xyxy,
imc,
file=self.save_dir / 'crops' / self.model.model.names[c] / f'{self.data_path.stem}.jpg',
BGR=True)
return log_string
class MainWindow(QMainWindow, Ui_MainWindow):
main2yolo_begin_sgl = Signal() # The main window sends an execution signal to the yolo instance
def __init__(self, parent=None):
super(MainWindow, self).__init__(parent)
# basic interface
self.setupUi(self)
self.setAttribute(Qt.WA_TranslucentBackground) # rounded transparent
self.setWindowFlags(Qt.FramelessWindowHint) # Set window flag: hide window borders
UIFuncitons.uiDefinitions(self)
# Show module shadows
UIFuncitons.shadow_style(self, self.Class_QF, QColor(162,129,247))
UIFuncitons.shadow_style(self, self.Target_QF, QColor(251, 157, 139))
UIFuncitons.shadow_style(self, self.Fps_QF, QColor(170, 128, 213))
UIFuncitons.shadow_style(self, self.Model_QF, QColor(64, 186, 193))
# read model folder
self.pt_list = os.listdir('./models')
self.pt_list = [file for file in self.pt_list if file.endswith('.pt')]
self.pt_list.sort(key=lambda x: os.path.getsize('./models/' + x)) # sort by file size
self.model_box.clear()
self.model_box.addItems(self.pt_list)
self.Qtimer_ModelBox = QTimer(self) # Timer: Monitor model file changes every 2 seconds
self.Qtimer_ModelBox.timeout.connect(self.ModelBoxRefre)
self.Qtimer_ModelBox.start(2000)
# Yolo-v8 thread
self.yolo_predict = YoloPredictor() # Create a Yolo instance
self.select_model = self.model_box.currentText() # default model
self.yolo_predict.new_model_name = "./models/%s" % self.select_model
self.yolo_thread = QThread() # Create yolo thread
self.yolo_predict.yolo2main_pre_img.connect(lambda x: self.show_image(x, self.pre_video))
self.yolo_predict.yolo2main_res_img.connect(lambda x: self.show_image(x, self.res_video))
self.yolo_predict.yolo2main_status_msg.connect(lambda x: self.show_status(x))
self.yolo_predict.yolo2main_fps.connect(lambda x: self.fps_label.setText(x))
# self.yolo_predict.yolo2main_labels.connect(self.show_labels)
self.yolo_predict.yolo2main_class_num.connect(lambda x:self.Class_num.setText(str(x)))
self.yolo_predict.yolo2main_target_num.connect(lambda x:self.Target_num.setText(str(x)))
self.yolo_predict.yolo2main_progress.connect(lambda x: self.progress_bar.setValue(x))
self.main2yolo_begin_sgl.connect(self.yolo_predict.run)
self.yolo_predict.moveToThread(self.yolo_thread)
# Model parameters
self.model_box.currentTextChanged.connect(self.change_model)
self.iou_spinbox.valueChanged.connect(lambda x:self.change_val(x, 'iou_spinbox')) # iou box
self.iou_slider.valueChanged.connect(lambda x:self.change_val(x, 'iou_slider')) # iou scroll bar
self.conf_spinbox.valueChanged.connect(lambda x:self.change_val(x, 'conf_spinbox')) # conf box
self.conf_slider.valueChanged.connect(lambda x:self.change_val(x, 'conf_slider')) # conf scroll bar
self.speed_spinbox.valueChanged.connect(lambda x:self.change_val(x, 'speed_spinbox'))# speed box
self.speed_slider.valueChanged.connect(lambda x:self.change_val(x, 'speed_slider')) # speed scroll bar
# Prompt window initialization
self.Class_num.setText('--')
self.Target_num.setText('--')
self.fps_label.setText('--')
self.Model_name.setText(self.select_model)
# Select detection source
self.src_file_button.clicked.connect(self.open_src_file) # select local file
# self.src_cam_button.clicked.connect(self.show_status("The function has not yet been implemented."))#chose_cam
# self.src_rtsp_button.clicked.connect(self.show_status("The function has not yet been implemented."))#chose_rtsp
# start testing button
self.run_button.clicked.connect(self.run_or_continue) # pause/start
self.stop_button.clicked.connect(self.stop) # termination
# Other function buttons
self.save_res_button.toggled.connect(self.is_save_res) # save image option
self.save_txt_button.toggled.connect(self.is_save_txt) # Save label option
self.ToggleBotton.clicked.connect(lambda: UIFuncitons.toggleMenu(self, True)) # left navigation button
self.settings_button.clicked.connect(lambda: UIFuncitons.settingBox(self, True)) # top right settings button
# initialization
self.load_config()
# The main window displays the original image and detection results
@staticmethod
def show_image(img_src, label):
try:
ih, iw, _ = img_src.shape
w = label.geometry().width()
h = label.geometry().height()
# keep the original data ratio
if iw/w > ih/h:
scal = w / iw
nw = w
nh = int(scal * ih)
img_src_ = cv2.resize(img_src, (nw, nh))
else:
scal = h / ih
nw = int(scal * iw)
nh = h
img_src_ = cv2.resize(img_src, (nw, nh))
frame = cv2.cvtColor(img_src_, cv2.COLOR_BGR2RGB)
img = QImage(frame.data, frame.shape[1], frame.shape[0], frame.shape[2] * frame.shape[1],
QImage.Format_RGB888)
label.setPixmap(QPixmap.fromImage(img))
except Exception as e:
print(repr(e))
# Control start/pause
def run_or_continue(self):
if self.yolo_predict.source == '':
self.show_status('Please select a video source before starting detection...')
self.run_button.setChecked(False)
else:
self.yolo_predict.stop_dtc = False
if self.run_button.isChecked():
self.run_button.setChecked(True) # start button
self.save_txt_button.setEnabled(False) # It is forbidden to check and save after starting the detection
self.save_res_button.setEnabled(False)
self.show_status('Detecting...')
self.yolo_predict.continue_dtc = True # Control whether Yolo is paused
if not self.yolo_thread.isRunning():
self.yolo_thread.start()
self.main2yolo_begin_sgl.emit()
else:
self.yolo_predict.continue_dtc = False
self.show_status("Pause...")
self.run_button.setChecked(False) # start button
# bottom status bar information
def show_status(self, msg):
self.status_bar.setText(msg)
if msg == 'Detection completed' or msg == '检测完成':
self.save_res_button.setEnabled(True)
self.save_txt_button.setEnabled(True)
self.run_button.setChecked(False)
self.progress_bar.setValue(0)
if self.yolo_thread.isRunning():
self.yolo_thread.quit() # end process
elif msg == 'Detection terminated!' or msg == '检测终止':
self.save_res_button.setEnabled(True)
self.save_txt_button.setEnabled(True)
self.run_button.setChecked(False)
self.progress_bar.setValue(0)
if self.yolo_thread.isRunning():
self.yolo_thread.quit() # end process
self.pre_video.clear() # clear image display
self.res_video.clear()
self.Class_num.setText('--')
self.Target_num.setText('--')
self.fps_label.setText('--')
# select local file
def open_src_file(self):
config_file = 'config/fold.json'
config = json.load(open(config_file, 'r', encoding='utf-8'))
open_fold = config['open_fold']
if not os.path.exists(open_fold):
open_fold = os.getcwd()
name, _ = QFileDialog.getOpenFileName(self, 'Video/image', open_fold, "Pic File(*.mp4 *.mkv *.avi *.flv *.jpg *.png)")
if name:
self.yolo_predict.source = name
self.show_status('Load File:{}'.format(os.path.basename(name)))
config['open_fold'] = os.path.dirname(name)
config_json = json.dumps(config, ensure_ascii=False, indent=2)
with open(config_file, 'w', encoding='utf-8') as f:
f.write(config_json)
self.stop()
# Select camera source---- have one bug
def chose_cam(self):
try:
self.stop()
MessageBox(
self.close_button, title='Note', text='loading camera...', time=2000, auto=True).exec()
# get the number of local cameras
_, cams = Camera().get_cam_num()
popMenu = QMenu()
popMenu.setFixedWidth(self.src_cam_button.width())
popMenu.setStyleSheet('''
QMenu {
font-size: 16px;
font-family: "Microsoft YaHei UI";
font-weight: light;
color:white;
padding-left: 5px;
padding-right: 5px;
padding-top: 4px;
padding-bottom: 4px;
border-style: solid;
border-width: 0px;
border-color: rgba(255, 255, 255, 255);
border-radius: 3px;
background-color: rgba(200, 200, 200,50);}
''')
for cam in cams:
exec("action_%s = QAction('%s')" % (cam, cam))
exec("popMenu.addAction(action_%s)" % cam)
x = self.src_cam_button.mapToGlobal(self.src_cam_button.pos()).x()
y = self.src_cam_button.mapToGlobal(self.src_cam_button.pos()).y()
y = y + self.src_cam_button.frameGeometry().height()
pos = QPoint(x, y)
action = popMenu.exec(pos)
if action:
self.yolo_predict.source = action.text()
self.show_status('Loading camera:{}'.format(action.text()))
except Exception as e:
self.show_status('%s' % e)
# select network source
def chose_rtsp(self):
self.rtsp_window = Window()
config_file = 'config/ip.json'
if not os.path.exists(config_file):
ip = "rtsp://admin:admin888@192.168.1.2:555"
new_config = {"ip": ip}
new_json = json.dumps(new_config, ensure_ascii=False, indent=2)
with open(config_file, 'w', encoding='utf-8') as f:
f.write(new_json)
else:
config = json.load(open(config_file, 'r', encoding='utf-8'))
ip = config['ip']
self.rtsp_window.rtspEdit.setText(ip)
self.rtsp_window.show()
self.rtsp_window.rtspButton.clicked.connect(lambda: self.load_rtsp(self.rtsp_window.rtspEdit.text()))
# load network sources
def load_rtsp(self, ip):
try:
self.stop()
MessageBox(
self.close_button, title='提示', text='加载 rtsp...', time=1000, auto=True).exec()
self.yolo_predict.source = ip
new_config = {"ip": ip}
new_json = json.dumps(new_config, ensure_ascii=False, indent=2)
with open('config/ip.json', 'w', encoding='utf-8') as f:
f.write(new_json)
self.show_status('Loading rtsp:{}'.format(ip))
self.rtsp_window.close()
except Exception as e:
self.show_status('%s' % e)
# Save test result button--picture/video
def is_save_res(self):
if self.save_res_button.checkState() == Qt.CheckState.Unchecked:
self.show_status('NOTE: Run image results are not saved.')
self.yolo_predict.save_res = False
elif self.save_res_button.checkState() == Qt.CheckState.Checked:
self.show_status('NOTE: Run image results will be saved.')
self.yolo_predict.save_res = True
# Save test result button -- label (txt)
def is_save_txt(self):
if self.save_txt_button.checkState() == Qt.CheckState.Unchecked:
self.show_status('NOTE: Labels results are not saved.')
self.yolo_predict.save_txt = False
elif self.save_txt_button.checkState() == Qt.CheckState.Checked:
self.show_status('NOTE: Labels results will be saved.')
self.yolo_predict.save_txt = True
# Configuration initialization ~~~wait to change~~~
def load_config(self):
config_file = 'config/setting.json'
if not os.path.exists(config_file):
iou = 0.26
conf = 0.33
rate = 10
save_res = 0
save_txt = 0
new_config = {"iou": iou,
"conf": conf,
"rate": rate,
"save_res": save_res,
"save_txt": save_txt
}
new_json = json.dumps(new_config, ensure_ascii=False, indent=2)
with open(config_file, 'w', encoding='utf-8') as f:
f.write(new_json)
else:
config = json.load(open(config_file, 'r', encoding='utf-8'))
if len(config) != 5:
iou = 0.26
conf = 0.33
rate = 10
save_res = 0
save_txt = 0
else:
iou = config['iou']
conf = config['conf']
rate = config['rate']
save_res = config['save_res']
save_txt = config['save_txt']
self.save_res_button.setCheckState(Qt.CheckState(save_res))
self.yolo_predict.save_res = (False if save_res==0 else True )
self.save_txt_button.setCheckState(Qt.CheckState(save_txt))
self.yolo_predict.save_txt = (False if save_txt==0 else True )
self.run_button.setChecked(False)
self.show_status("Welcome~")
# Terminate button and associated state
def stop(self):
if self.yolo_thread.isRunning():
self.yolo_thread.quit() # end thread
self.yolo_predict.stop_dtc = True
self.run_button.setChecked(False) # start key recovery
self.save_res_button.setEnabled(True) # Ability to use the save button
self.save_txt_button.setEnabled(True) # Ability to use the save button
self.pre_video.clear() # clear image display
self.res_video.clear() # clear image display
self.progress_bar.setValue(0)
self.Class_num.setText('--')
self.Target_num.setText('--')
self.fps_label.setText('--')
# Change detection parameters
def change_val(self, x, flag):
if flag == 'iou_spinbox':
self.iou_slider.setValue(int(x*100)) # The box value changes, changing the slider
elif flag == 'iou_slider':
self.iou_spinbox.setValue(x/100) # The slider value changes, changing the box
self.show_status('IOU Threshold: %s' % str(x/100))
self.yolo_predict.iou_thres = x/100
elif flag == 'conf_spinbox':
self.conf_slider.setValue(int(x*100))
elif flag == 'conf_slider':
self.conf_spinbox.setValue(x/100)
self.show_status('Conf Threshold: %s' % str(x/100))
self.yolo_predict.conf_thres = x/100
elif flag == 'speed_spinbox':
self.speed_slider.setValue(x)
elif flag == 'speed_slider':
self.speed_spinbox.setValue(x)
self.show_status('Delay: %s ms' % str(x))
self.yolo_predict.speed_thres = x # ms
# change model
def change_model(self,x):
self.select_model = self.model_box.currentText()
self.yolo_predict.new_model_name = "./models/%s" % self.select_model
self.show_status('Change Model:%s' % self.select_model)
self.Model_name.setText(self.select_model)
# label result
# def show_labels(self, labels_dic):
# try:
# self.result_label.clear()
# labels_dic = sorted(labels_dic.items(), key=lambda x: x[1], reverse=True)
# labels_dic = [i for i in labels_dic if i[1]>0]
# result = [' '+str(i[0]) + ':' + str(i[1]) for i in labels_dic]
# self.result_label.addItems(result)
# except Exception as e:
# self.show_status(e)
# Cycle monitoring model file changes
def ModelBoxRefre(self):
pt_list = os.listdir('./models')
pt_list = [file for file in pt_list if file.endswith('.pt')]
pt_list.sort(key=lambda x: os.path.getsize('./models/' + x))
# It must be sorted before comparing, otherwise the list will be refreshed all the time
if pt_list != self.pt_list:
self.pt_list = pt_list
self.model_box.clear()
self.model_box.addItems(self.pt_list)
# Get the mouse position (used to hold down the title bar and drag the window)
def mousePressEvent(self, event):
p = event.globalPosition()
globalPos = p.toPoint()
self.dragPos = globalPos
# Optimize the adjustment when dragging the bottom and right edges of the window size
def resizeEvent(self, event):
# Update Size Grips
UIFuncitons.resize_grips(self)
# Exit Exit thread, save settings
def closeEvent(self, event):
config_file = 'config/setting.json'
config = dict()
config['iou'] = self.iou_spinbox.value()
config['conf'] = self.conf_spinbox.value()
config['rate'] = self.speed_spinbox.value()
config['save_res'] = (0 if self.save_res_button.checkState()==Qt.Unchecked else 2)
config['save_txt'] = (0 if self.save_txt_button.checkState()==Qt.Unchecked else 2)
config_json = json.dumps(config, ensure_ascii=False, indent=2)
with open(config_file, 'w', encoding='utf-8') as f:
f.write(config_json)
# Exit the process before closing
if self.yolo_thread.isRunning():
self.yolo_predict.stop_dtc = True
self.yolo_thread.quit()
MessageBox(
self.close_button, title='Note', text='Exiting, please wait...', time=3000, auto=True).exec()
sys.exit(0)
else:
sys.exit(0)
if __name__ == "__main__":
app = QApplication(sys.argv)
Home = MainWindow()
Home.show()
sys.exit(app.exec())