-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrfm_analysis.py
277 lines (189 loc) · 11.3 KB
/
rfm_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
###############################################################
# Customer Segmentation with RFM
###############################################################
###############################################################
# Business Problem
###############################################################
# FLO wants to segment its customers and determine marketing strategies according to these segments.
# For this, the behavior of the customers will be defined and groups will be formed according to these behavior clusters.
###############################################################
# Dataset Story
###############################################################
# The dataset consists of information obtained from the past shopping behaviors of customers who made their last
# purchases as OmniChannel (both online and offline shopper) in 2020 - 2021.
# master_id: Unique client number
# order_channel : Which channel of the shopping platform is used (Android, ios, Desktop, Mobile, Offline)
# last_order_channel : The channel where the last purchase was made
# first_order_date : The date of the customer's first purchase
# last_order_date : The date of the last purchase made by the customer
# last_order_date_online : The date of the last purchase made by the customer on the online platform
# last_order_date_offline : The date of the last purchase made by the customer on the offline platform
# order_num_total_ever_online : The total number of purchases made by the customer on the online platform
# order_num_total_ever_offline : Total number of purchases made by the customer offline
# customer_value_total_ever_offline : The total price paid by the customer for offline purchases
# customer_value_total_ever_online : The total price paid by the customer for their online shopping
# interested_in_categories_12 : List of categories the customer has purchased from in the last 12 months
###############################################################
# TASKS
###############################################################
import pandas as pd
import numpy as np
import datetime as dt
pd.set_option('display.max_columns', 20)
pd.set_option('display.max_rows', 50)
pd.set_option('display.float_format', lambda x: '%.3f' % x)
pd.set_option('display.expand_frame_repr', False)
pd.set_option('display.width', 500)
###############################################################
# TASK 1: Prepare and Understand Data (Data Understanding)
###############################################################
file_path = 'RFM/flo_data_20k.csv'
main_df = pd.read_csv(file_path)
df = main_df.copy()
# TASK 2: Examine the first 10 rows of the data set, variable names, size, descriptive statistics,
# null values, and variable types.
def check_dataframe(df, row_num=10):
print("********** Dataset Shape **********")
print("No. of Rows:", df.shape[0], "\nNo. of Columns:", df.shape[1])
print("********** Dataset Information **********")
print(df.info())
print("********** Types of Columns **********")
print(df.dtypes)
print(f"********** First {row_num} Rows **********")
print(df.head(row_num))
print(f"********** Last {row_num} Rows **********")
print(df.tail(row_num))
print("********** Summary Statistics of The Dataset **********")
print(df.describe())
print("********** No. of Null Values In The Dataset **********")
print(df.isnull().sum())
check_dataframe(df)
# TASK 3: Omnichannel means that customers shop from both online and offline platforms.
# Create new variables for each customer's total number of purchases and spending.
# total purchase of omnichannel (offline + online), total number of purchases
df["total_purchase"] = df["order_num_total_ever_online"] + df["order_num_total_ever_offline"]
# total spend of omnichannel (offline + online), total expenditure
df["total_spend"] = df["customer_value_total_ever_offline"] + df["customer_value_total_ever_online"]
df.head()
# TASK 4: Examine the types of variables. Convert the object variables containing date in the data set to date format.
df.info()
date_columns = ["first_order_date", "last_order_date", "last_order_date_online", "last_order_date_offline"]
df[date_columns] = df[date_columns].apply(lambda x: [pd.to_datetime(date) for date in x])
df.dtypes
# TASK 5: Look at the distribution of the number of customers in the shopping channels, the total number of products
# purchased and total expenditures.
# master_id count shows us how many purchases there are.
df.groupby('order_channel').agg({'total_purchase': 'sum',
'total_spend': 'sum',
'master_id': 'count'}).sort_values(by='master_id', ascending=False)
# TASK 6: Rank the top 10 customers who spend the most.
df[["master_id", "total_spend"]].sort_values(by="total_spend", ascending=False).head(10)
# TASK 7: Rank the top 10 customers with the most purchases.
df[["master_id", "total_purchase"]].sort_values(by="total_purchase", ascending=False).head(10)
# TASK 8: Functionalize the data provisioning process.
def data_processing(df):
df["total_purchase"] = df["order_num_total_ever_online"] + df["order_num_total_ever_offline"]
df["total_spend"] = df["customer_value_total_ever_offline"] + df["customer_value_total_ever_online"]
date_columns = ["first_order_date", "last_order_date", "last_order_date_online", "last_order_date_offline"]
df[date_columns] = df[date_columns].apply(lambda x: [pd.to_datetime(date) for date in x])
return df
data_processing(df)
###############################################################
# TASK 2: Calculating RFM Metrics
###############################################################
# Step 1: Make the definitions of Recency, Frequency and Monetary.
"""
Recency (Taze Görünüm): Müşterinin son satın alma tarihinden bugüne kadar geçen süreyi ifade eder. Bu süre ne kadar
kısa ise, müşterinin daha "taze" olduğu ve daha aktif olduğu anlamına gelir.
Frequency (Sıklık): Müşterinin belirli bir zaman aralığında yaptığı satın alma sayısını ifade eder. Bu, müşterinin ne
sıklıkla satın aldığına ve dolayısıyla markanın ne kadar sıklıkla etkileşimde olduğuna işaret eder.
Monetary (Parasal): Müşterinin belirli bir zaman aralığında yaptığı toplam harcama tutarını ifade eder. Bu, müşterinin
ne kadar değerli olduğunu gösterir ve markanın ne kadar gelir elde ettiğini yansıtır.
"""
# Step 2: Calculate the Recency, Frequency and Monetary metrics for the customer.
# Step 3: Assign your calculated metrics to a variable named rfm.
# Step 4: Change the names of the metrics you created to recency, frequency and monetary.
# Find the last order date
last_order = df["last_order_date"].max()
# Setting the recency date for 2 days after the last order date
recency_date = dt.datetime(2021, 6, 2)
rfm = df.groupby('master_id').agg({'last_order_date': lambda last_order_date: (recency_date - last_order_date.max()).days,
'total_purchase': lambda total_purchase: total_purchase.sum(),
'total_spend': lambda total_spend: total_spend.sum()})
rfm.columns = ['Recency', 'Frequency', 'Monetary']
rfm.describe().T
###############################################################
# TASK 3: Calculating RF and RFM Scores
###############################################################
# Converting Recency, Frequency and Monetary metrics to scores between 1-5 with the help of qcut and recording
# these scores as recency_score, frequency_score and monetary_score
rfm["recency_score"] = pd.qcut(rfm['Recency'], 5, labels=[5, 4, 3, 2, 1])
rfm["frequency_score"] = pd.qcut(rfm['Frequency'].rank(method="first"), 5, labels=[1, 2, 3, 4, 5])
rfm["monetary_score"] = pd.qcut(rfm['Monetary'], 5, labels=[1, 2, 3, 4, 5])
rfm.head()
# Express recency_score and frequency_score as a single variable and save it as RF_SCORE
rfm["rfm_score"] = (rfm['recency_score'].astype(str) +
rfm['frequency_score'].astype(str))
rfm.head()
###############################################################
# TASK 4: Defining RF Scores as Segments
###############################################################
# Segment definition and converting RF_SCORE to segments with the help of defined seg_map so that the
# generated RFM scores can be explained more clearly.
seg_map = {
r'[1-2][1-2]': 'hibernating',
r'[1-2][3-4]': 'at_Risk',
r'[1-2]5': 'cant_loose',
r'3[1-2]': 'about_to_sleep',
r'33': 'need_attention',
r'[3-4][4-5]': 'loyal_customers',
r'41': 'promising',
r'51': 'new_customers',
r'[4-5][2-3]': 'potential_loyalists',
r'5[4-5]': 'champions'
}
seg_map
rfm['segment'] = rfm['recency_score'].astype(str) + rfm['frequency_score'].astype(str)
rfm['segment'] = rfm['segment'].replace(seg_map, regex=True)
rfm.head()
###############################################################
# TASK 5: Time for action!
###############################################################
# Step 1: Examine the recency, frequency and monetary averages of the segments.
rfm[["segment", "Recency", "Frequency", "Monetary"]].groupby("segment").agg(["mean", "count"])
segments = rfm['segment'].value_counts().sort_values(ascending=False)
segments
# library
import matplotlib.pyplot as plt
import seaborn as sns
# declaring data
data = segments.values
keys = segments.keys().values
# define Seaborn color palette to use
palette_color = sns.color_palette('bright')
# plotting data on chart
plt.pie(data, labels=keys, colors=palette_color, autopct='%.0f%%')
# displaying chart
plt.show()
# Step 2: With the help of RFM analysis, find the customers in the relevant profile for 2 cases and save
# the customer IDs to the csv.
# a. FLO includes a new women's shoe brand. The product prices of the brand it includes are above the general
# customer preferences. For this reason, customers in the profile who will be interested in the promotion of the
# brand and product sales are requested to be contacted privately. These customers were planned to be loyal and female
# shoppers. Save the id numbers of the customers to the csv file as new_brand_target_customer_id.cvs.
new_df = df.merge(rfm, on="master_id")
new_df = new_df[new_df["segment"].isin(["loyal_customers", "champions"])]
new_df.head()
new_df = new_df[new_df["interested_in_categories_12"].str.contains("KADIN")]
new_df.reset_index(drop=True, inplace=True)
new_df['segment'].unique()
new_df['interested_in_categories_12'].unique()
new_df["master_id"].to_csv("yeni_marka_hedef_musteri_id.csv")
# b. Up to 40% discount is planned for Men's and Children's products. We want to specifically target customers who
# are good customers in the past who are interested in categories related to this discount, but have not shopped for
# a long time and new customers. Save the ids of the customers in the appropriate profile to the csv file as
# discount_target_customer_ids.csv.
new_df2 = df.merge(rfm, on="master_id")
new_df2 = new_df2[new_df2["segment"].isin(["about_to_sleep", "new_customers"])]
new_df2.reset_index(drop=True, inplace=True)
new_df2["master_id"].to_csv("indirim_hedef_musteri_ids.csv")