-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_NN2.py
192 lines (154 loc) · 5.15 KB
/
my_NN2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
class NeuralNetwork():
def __init__(self):
self.weights=[]
self.layers=[]
def add(self,shape,input_dim=0):
if(input_dim==0):
input_dim=self.layers[-1]
self.weights.append(2*np.random.random((input_dim,shape))-1)
self.layers.append(shape)
else:
self.layers.append(input_dim)
def nonlin(self,x,deriv=False):
#Sigmoid
if(deriv==True):
return np.exp(-x)/((1+np.exp(-x))**2)
return 1/(1+np.exp(-x))
#ReLU
"""if(deriv==True):
if(x>0):
return 1
else:
return 0
else:
return max(x,0)"""
def plot(self,images,cols=1,titles=None):
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
fig=plt.figure(figsize=(28,28))
plt.gray()
for i in range(10):
plt.subplot(2,5,i+1)
#fig.add_subplot(i+1,2,1)
#plt.title("Weights %d" %(i+1))
plt.imshow(im[:,i].reshape((28,-1)).astype('float32'))
plt.show()
def fit(self,X,Y,epochs=10,lr=0.001,lamda=0):
layer_error=0
#print("Initial weights:",self.weights[0])
cost=[]
for i in range(epochs):
#Feed Forward
forward=X
prediction=self.predict(forward)
error=prediction-Y
forward=self.feed_forward(forward)
#from sklearn.metrics import coverage_error
#print("Error: ",coverage_error(Y,forward[-1]))
cost.append(sum(error[0]**2)/2)
print("Cost: ",cost[i])
#layer_error will propogate backwards, itll keep on changin to the value of error at given layer in the loop
layer_error=error
#Will save all changes of self.weights to implement it simultaneously at the end
dJdW={}
delta=-layer_error
for i in reversed(range(0,len(self.layers)-1)):
#For appending from front side
dJdW[i]=np.dot(forward['a'][i].T,delta)
#print(forward['a'][i].shape,delta.shape,dJdW[i].shape)
delta= np.multiply(np.dot(delta,self.weights[i].T), self.nonlin(forward['z'][i],True))
#delta=np.dot(delta,self.nonlin(forward[i],True))
#print(dJdW[0][0])
#Changes to self.weights
for i in range(0,len(self.weights)):
#self.weights[-i]+=np.array(forward[-i]).T.dot(layer_delta[-i])
self.weights[i]+= (lr/len(X))*dJdW[i]
import matplotlib.pyplot as plt
for i in range(len(cost)):
plt.plot(i,cost[i],'k+')
plt.show()
#print("Final weights", self.weights[0])
"""
#Forward
for i in self.weights:
forward.append(nonlin(forward[-1]*i))
error=forward[-1]-Y
#layer_error will propogate backwards, itll keep on changin to the value of error at given layer in the loop
layer_error=error
#Will save all changes of self.weights to implement it simultaneously at the end
layer_delta=0
#Backpropogation
for i in range(1,len(self.layers)):
if(i==1):
layer_delta=layer_error*nonlin(forward[-i],True)
layer_error=layer_delta.dot(self.weights[-i])
continue
#For appending from front side
layer_delta=list([layer_error*nonlin(forward[-i],True),layer_delta])
#New error
layer_error=layer_delta[0].dot(self.weights[-i])
for i in range(1,len(self.layers)):
self.weights[-i]+=forward[-i-1].T.dot(layer_delta[-i])
"""
def feed_forward(self,X):
f=X
forward={'a':[],'z':[]}
forward['z'].append(f)
forward['a'].append(f)
"""for i in range(len(self.weights)):
forward.append([])"""
for i in range(len(self.weights)):
#print(np.dot(f,self.weights[i]))
#print(self.nonlin(np.dot(f,self.weights[i])))
forward['z'].append(np.dot(f,self.weights[i]))
f=self.nonlin(np.dot(f,self.weights[i]))
forward['a'].append(f)
#print(f)
#print(np.array(forward[-1]).shape)
#print(forward[-1])
#print(len(forward[0]))
#print(len(forward[0][-1]))
return forward
def predict(self,x):
f=x
for i in range(len(self.weights)):
f=self.nonlin(np.dot(f,self.weights[i]))
return f
if __name__ == '__main__':
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import precision_score
from sklearn.metrics import coverage_error
(X_train,Y_train),(X_test,Y_test)=mnist.load_data()
pixels=X_train.shape[1]*X_train.shape[2]
model=NeuralNetwork()
#model.plot(X_train[:10])
np.random.seed(0)
model.add(784,input_dim=pixels)
model.add(150)
model.add(20)
model.add(10)
X_train=X_train.reshape(X_train.shape[0],pixels).astype('float32')
X_test=X_test.reshape(X_test.shape[0],pixels).astype('float32')
num_classes=np.unique(Y_train).shape[0]
#Normalize Data
X_train=X_train/255
X_test=X_test/255
#One hot encode-Each output type has its own node
#print(Y_train[0])
Y_train=np_utils.to_categorical(Y_train)
#print(Y_train[0])
Y_test=np_utils.to_categorical(Y_test)
print(X_train.shape)
#print("X:",X_train[0],"Y:",Y_train[0])
model.fit(X_train,Y_train,lr=0.08,epochs=20,lamda=5)
predictions=model.predict(X_test)
print("Accuracy Score: ",coverage_error(Y_test,predictions))
prediction=model.predict(X_train[0])
print(predictions[0])
print(np.argmax(prediction),np.argmax(Y_train[0]))
im=model.weights[0]
model.plot(im[0:10])