Skip to content

This repository hosts a comprehensive suite for graph-based entity summarization dataset generating from user-selected Wikipedia pages. Utilizing a series of interconnected modules, it leverages Wikidata and Wikipedia dumps to construct a dataset, alongside auto-generated ground truths.

License

Notifications You must be signed in to change notification settings

msorkhpar/wiki-entity-summarization

Repository files navigation

arXivGitHub LicenseGitHub Release

Wiki Entity Summarization Benchmark (WikES)

This repository leverages the wiki-entity-summarization-preprocessor project to construct an Entity Summarization Graph based on a given set of nodes. The project tries to maintain the structure of the Wikidata knowledge graph by performing random walk sampling with a depth of K, starting from seed nodes after all the summary edges have been added to the result. It then checks if the expanded graph is a single weakly connected component. If not, it finds B paths to connect the components. The final result is a heterogeneous graph consisting of the seed nodes, their summary edges, (1..K)-hop neighbors of the seed nodes and their edges, and any intermediary nodes added to ensure graph connectivity. Each node and edge in the graph is enriched with metadata obtained from Wikidata and Wikipedia and predicate information, providing additional context and details about the entities and their relationships.

A single root entity with its summary edges and other expanded edges by random walk

Loading the Datasets

Load Using wikes-toolkit

To load the dataset, we have introduced a toolkit that can be used to download, load, work, and evaluate 48 Wiki-Entity-Summarization datasets. The toolkit is available as a Python package and can be installed using pip:

pip install wikes-toolkit

A simple example of how to use the toolkit is as follows:

from wikes_toolkit import WikESToolkit, V1, WikESGraph

toolkit = WikESToolkit(save_path="./data")  # save_path is optional
G = toolkit.load_graph(
    WikESGraph,
    V1.WikiLitArt.SMALL,
    entity_formatter=lambda e: f"Entity({e.wikidata_label})",
    predicate_formatter=lambda p: f"Predicate({p.label})",
    triple_formatter=lambda
        t: f"({t.subject_entity.wikidata_label})-[{t.predicate.label}]-> ({t.object_entity.wikidata_label})"
)

root_nodes = G.root_entities()
nodes = G.entities()

Please refer to the Wiki-Entity-Summarization-Toolkit repository for more information.

Using mlcroissant

To load WikES datasets, you can use mlcorissant as well. You can find the metadata JSON files in the dataset details tabel.

Here is an example of loading our dataset using mlcorissant:

from mlcroissant import Dataset


def print_first_item(record_name):
    for record in dataset.records(record_set=record_name):
        for key, val in record.items():
            if isinstance(val, bytes):
                val = str(val, "utf-8")
            print(f"{key}=[{val}]({type(val)})", end=", ")
        break
    print()


dataset = Dataset(
    jsonld="https://github.com/msorkhpar/wiki-entity-summarization/releases/download/1.0.5/WikiProFem-s.json")

print(dataset.metadata.record_sets)

print_first_item("entities")
print_first_item("root-entities")
print_first_item("predicates")
print_first_item("triples")
print_first_item("ground-truths")
""" The output of the above code:
wikes-dataset
[RecordSet(uuid="entities"), RecordSet(uuid="root-entities"), RecordSet(uuid="predicates"), RecordSet(uuid="triples"), RecordSet(uuid="ground-truths")]
id=[0](<class 'int'>), entity=[Q6387338](<class 'str'>), wikidata_label=[Ken Blackwell](<class 'str'>), wikidata_description=[American politician and activist](<class 'str'>), wikipedia_id=[769596](<class 'int'>), wikipedia_title=[Ken_Blackwell](<class 'str'>), 
entity=[9](<class 'int'>), category=[singer](<class 'str'>), 
id=[0](<class 'int'>), predicate=[P1344](<class 'str'>), predicate_label=[participant in](<class 'str'>), predicate_desc=[event in which a person or organization was/is a participant; inverse of P710 or P1923](<class 'str'>), 
subject=[1](<class 'int'>), predicate=[0](<class 'int'>), object=[778](<class 'int'>), 
root_entity=[9](<class 'int'>), subject=[9](<class 'int'>), predicate=[8](<class 'int'>), object=[31068](<class 'int'>), 
"""

Loading the Pre-processed Databases

As described in wiki-entity-summarization-preprocessor, we have imported en-wikidata items as a graph with their summaries into a Neo4j database using Wikipedia and Wikidata XML dump files. Additionally, all the other related metadata was imported into a Postgres database.

If you want to create your own dataset but do not want to run the pre-processor again, you can download and load the exported files from these two databases. Please refer to the release notes of the current version 1.0.0 ( enwiki-2023-05-1 and wikidata-wiki-2023-05-1).

Process Overview

1. Building the Summary Graph

  • Create a summary graph where each seed node is expanded with its summary edges.

2. Expanding the Summary Graph

  • Perform random walks starting from the seed nodes to mimic the structure of the Wikidata graph.
  • Scale the number of walks based on the degree of the seed nodes.
  • Add new edges to the graph from the random walk results.

3. Connecting Components

  • Check if the expanded graph forms a single weakly connected component.
  • If not, iteratively connect smaller components using the shortest paths until a single component is achieved.

4. Adding Metadata

  • Enhance the final graph with additional metadata for each node and edge.
  • Include labels, descriptions, and other relevant information from Wikidata, Wikipedia, and predicate information.

Pre-generated Datasets

We have generated datasets using A Brief History of Human Time project. These datasets contain different sets of seed nodes, categorized by various human arts and professions.

dataset (variant, size, None/train/val/test) #roots #smmaries #nodes #edges #labels roots category distribution Running Time(sec)
WikiLitArt-s
csv, graphml, croissant.json
494 10416 85346 136950 547 actor=150
composer=35
film=41
novelist=24
painter=59
poet=39
screenwriter=17
singer=72
writer=57
91.934
WikiLitArt-s-train
csv, graphml, croissant.json
346 7234 61885 96497 508 actor=105
composer=24
film=29
novelist=17
painter=42
poet=27
screenwriter=12
singer=50
writer=40
66.023
WikiLitArt-s-val
csv, graphml, croissant.json
74 1572 14763 20795 340 actor=23
composer=5
film=6
novelist=4
painter=9
poet=6
screenwriter=2
singer=11
writer=8
14.364
WikiLitArt-s-test
csv, graphml, croissant.json
74 1626 15861 22029 350 actor=22
composer=6
film=6
novelist=3
painter=8
poet=6
screenwriter=3
singer=11
writer=9
14.6
WikiLitArt-m
csv, graphml, croissant.json
494 10416 128061 220263 604 actor=150
composer=35
film=41
novelist=24
painter=59
poet=39
screenwriter=17
singer=72
writer=57
155.368
WikiLitArt-m-train
csv, graphml, croissant.json
346 7234 93251 155667 566 actor=105
composer=24
film=29
novelist=17
painter=42
poet=27
screenwriter=12
singer=50
writer=40
111.636
WikiLitArt-m-val
csv, graphml, croissant.json
74 1572 22214 33547 375 actor=23
composer=5
film=6
novelist=4
painter=9
poet=6
screenwriter=2
singer=11
writer=8
22.957
WikiLitArt-m-test
csv, graphml, croissant.json
74 1626 24130 35980 394 actor=22
composer=6
film=6
novelist=3
painter=8
poet=6
screenwriter=3
singer=11
writer=9
26.187
WikiLitArt-l
csv, graphml, croissant.json
494 10416 239491 466905 703 actor=150
composer=35
film=41
novelist=24
painter=59
poet=39
screenwriter=17
singer=72
writer=57
353.113
WikiLitArt-l-train
csv, graphml, croissant.json
346 7234 176057 332279 661 actor=105
composer=24
film=29
novelist=17
painter=42
poet=27
screenwriter=12
singer=50
writer=40
244.544
WikiLitArt-l-val
csv, graphml, croissant.json
74 1572 42745 71734 446 actor=23
composer=5
film=6
novelist=4
painter=9
poet=6
screenwriter=2
singer=11
writer=8
57.263
WikiLitArt-l-test
csv, graphml, croissant.json
74 1626 46890 77931 493 actor=22
composer=6
film=6
novelist=3
painter=8
poet=6
screenwriter=3
singer=11
writer=9
60.466
WikiCinema-s
csv, graphml, croissant.json
493 11750 70753 126915 469 actor=405
film=88
118.014
WikiCinema-s-train
csv, graphml, croissant.json
345 8374 52712 89306 437 actor=284
film=61
84.364
WikiCinema-s-val
csv, graphml, croissant.json
73 1650 13362 19280 305 actor=59
film=14
18.651
WikiCinema-s-test
csv, graphml, croissant.json
75 1744 14777 21567 313 actor=62
film=13
19.851
WikiCinema-m
csv, graphml, croissant.json
493 11750 101529 196061 541 actor=405
film=88
196.413
WikiCinema-m-train
csv, graphml, croissant.json
345 8374 75900 138897 491 actor=284
film=61
142.091
WikiCinema-m-val
csv, graphml, croissant.json
73 1650 19674 30152 344 actor=59
film=14
31.722
WikiCinema-m-test
csv, graphml, croissant.json
75 1744 22102 34499 342 actor=62
film=13
33.674
WikiCinema-l
csv, graphml, croissant.json
493 11750 185098 397546 614 actor=405
film=88
475.679
WikiCinema-l-train
csv, graphml, croissant.json
345 8374 139598 284417 575 actor=284
film=61
333.148
WikiCinema-l-val
csv, graphml, croissant.json
73 1650 37352 63744 412 actor=59
film=14
68.62
WikiCinema-l-test
csv, graphml, croissant.json
75 1744 43238 74205 426 actor=62
film=13
87.07
WikiPro-s
csv, graphml, croissant.json
493 9853 79825 125912 616 actor=58
football=156
journalist=14
lawyer=16
painter=23
player=25
politician=125
singer=27
sport=21
writer=28
126.119
WikiPro-s-train
csv, graphml, croissant.json
345 6832 57529 87768 575 actor=41
football=109
journalist=10
lawyer=11
painter=16
player=17
politician=87
singer=19
sport=15
writer=20
89.874
WikiPro-s-val
csv, graphml, croissant.json
74 1548 15769 21351 405 actor=9
football=23
journalist=2
lawyer=3
painter=3
player=4
politician=19
singer=4
sport=3
writer=4
21.021
WikiPro-s-test
csv, graphml, croissant.json
74 1484 15657 21145 384 actor=8
football=24
journalist=2
lawyer=2
painter=4
player=4
politician=19
singer=4
sport=3
writer=4
21.743
WikiPro-m
csv, graphml, croissant.json
493 9853 119305 198663 670 actor=58
football=156
journalist=14
lawyer=16
painter=23
player=25
politician=125
singer=27
sport=21
writer=28
208.157
WikiPro-m-train
csv, graphml, croissant.json
345 6832 86434 138676 633 actor=41
football=109
journalist=10
lawyer=11
painter=16
player=17
politician=87
singer=19
sport=15
writer=20
141.563
WikiPro-m-val
csv, graphml, croissant.json
74 1548 24230 34636 463 actor=9
football=23
journalist=2
lawyer=3
painter=3
player=4
politician=19
singer=4
sport=3
writer=4
36.045
WikiPro-m-test
csv, graphml, croissant.json
74 1484 24117 34157 462 actor=8
football=24
journalist=2
lawyer=2
painter=4
player=4
politician=19
singer=4
sport=3
writer=4
36.967
WikiPro-l
csv, graphml, croissant.json
493 9853 230442 412766 769 actor=58
football=156
journalist=14
lawyer=16
painter=23
player=25
politician=125
singer=27
sport=21
writer=28
489.409
WikiPro-l-train
csv, graphml, croissant.json
345 6832 166685 290069 725 actor=41
football=109
journalist=10
lawyer=11
painter=16
player=17
politician=87
singer=19
sport=15
writer=20
334.864
WikiPro-l-val
csv, graphml, croissant.json
74 1548 48205 74387 549 actor=9
football=23
journalist=2
lawyer=3
painter=3
player=4
politician=19
singer=4
sport=3
writer=4
84.089
WikiPro-l-test
csv, graphml, croissant.json
74 1484 47981 72845 546 actor=8
football=24
journalist=2
lawyer=2
painter=4
player=4
politician=19
singer=4
sport=3
writer=4
92.545
WikiProFem-s
csv, graphml, croissant.json
468 8338 79926 123193 571 actor=141
athletic=25
football=24
journalist=16
painter=16
player=32
politician=81
singer=69
sport=18
writer=46
177.63
WikiProFem-s-train
csv, graphml, croissant.json
330 5587 58329 87492 521 actor=98
athletic=18
football=17
journalist=9
painter=13
player=22
politician=57
singer=48
sport=14
writer=34
127.614
WikiProFem-s-val
csv, graphml, croissant.json
68 1367 14148 19360 344 actor=21
athletic=4
football=3
journalist=4
painter=1
player=5
politician=13
singer=11
sport=1
writer=5
29.081
WikiProFem-test
csv, graphml, croissant.json
70 1387 13642 18567 360 actor=22
athletic=3
football=4
journalist=3
painter=2
player=5
politician=11
singer=10
sport=3
writer=7
27.466
WikiProFem-m
csv, graphml, croissant.json
468 8338 122728 196838 631 actor=141
athletic=25
football=24
journalist=16
painter=16
player=32
politician=81
singer=69
sport=18
writer=46
301.718
WikiProFem-m-train
csv, graphml, croissant.json
330 5587 89922 140505 600 actor=98
athletic=18
football=17
journalist=9
painter=13
player=22
politician=57
singer=48
sport=14
writer=34
217.699
WikiProFem-m-val
csv, graphml, croissant.json
68 1367 21978 31230 409 actor=21
athletic=4
football=3
journalist=4
painter=1
player=5
politician=13
singer=11
sport=1
writer=5
46.793
WikiProFem-m-test
csv, graphml, croissant.json
70 1387 21305 29919 394 actor=22
athletic=3
football=4
journalist=3
painter=2
player=5
politician=11
singer=10
sport=3
writer=7
46.317
WikiProFem-l
csv, graphml, croissant.json
468 8338 248012 413895 722 actor=141
athletic=25
football=24
journalist=16
painter=16
player=32
politician=81
singer=69
sport=18
writer=46
768.99
WikiProFem-l-train
csv, graphml, croissant.json
330 5587 183710 297686 676 actor=98
athletic=18
football=17
journalist=9
painter=13
player=22
politician=57
singer=48
sport=14
writer=34
544.893
WikiProFem-l-val
csv, graphml, croissant.json
68 1367 46018 67193 492 actor=21
athletic=4
football=3
journalist=4
painter=1
player=5
politician=13
singer=11
sport=1
writer=5
116.758
WikiProFem-l-test
csv, graphml, croissant.json
70 1387 44193 63563 472 actor=22
athletic=3
football=4
journalist=3
painter=2
player=5
politician=11
singer=10
sport=3
writer=7
118.524

Keep in mind that by providing a new set of seed nodes, you can generate the output for your own dataset.

Dataset Parameters

Parameter Value
Min valid summary edges 5
Random walk depth length 3
Min random walk number-small 100
Min random walk number-medium 150
Min random walk number-large 300
Max random walk number-small 300
Max random walk number-medium 600
Max random walk number-large 1800
Bridges number 5

Graph Structure

In the following you can see a sample of the graph format (we highly recommend using our toolkit to load the datasets):

CSV Format

After unzipping {variant}-{size}-{dataset_type}.zip file, you will find the following CSV files:

{variant}-{size}-{dataset_type}-entities.csv contains entities. An entity is a Wikidata item (node) in our dataset.

Field Description datatype
id incremental integer starting by zero int
entity Wikidata qid, e.g. Q76 string
wikidata_label Wikidata label (nullable) string
wikidata_desc Wikidata description (nullable) string
wikipedia_title Wikipedia title (nullable) string
wikipedia_id Wikipedia page id (nullable) long

{variant}-{size}-{dataset_type}-root-entities.csv contains root entities. A root entity is a seed node described previously.

Field Description datatype
entity id key in {variant}-{size}-{dataset_type}-entities.csv int
category category string

{variant}-{size}-{dataset_type}-predicates.csv contains predicates. A predicate is a Wikidata property or a describing a connection.

Field Description datatype
id incremental integer starting by zero int
predicate Wikidata Property id, e.g. P121 string
predicate_label Wikidata Property label (nullable) string
predicate_desc Wikidata Property description (nullable) string

{variant}-{size}-{dataset_type}-triples.csv contains triples. A triple is an edge between two entities with a predicate.

Field Description datatype
subject id key in {variant}-{size}-{dataset_type}-entities.csv int
predicate id key in {variant}-{size}-{dataset_type}-predicates.csv int
object id key in {variant}-{size}-{dataset_type}-entities.csv int

{viariant}_{size}_{dataset_type}-ground-truths.csv contains ground truth triples. A ground truth triple is an edge that is marked as a summary for a root entity.

Field Description datatype
root_entity entity in {variant}-{size}-{dataset_type}-root-entities.csv int
subject id key in {variant}-{size}-{dataset_type}-entities.csv int
predicate id key in {variant}-{size}-{dataset_type}-predicates.csv int
object id key in {variant}-{size}-{dataset_type}-entities.csv int

Note: for this file one of the columns subject or object is equal to the root_entity.

Example of CSV Files

# entities.csv
id,entity,wikidata_label,wikidata_desc,wikipedia_title,wikipedia_id
0,Q43416,Keanu Reeves,Canadian actor (born 1964),Keanu_Reeves,16603
1,Q3820,Beirut,capital and largest city of Lebanon,Beirut,37428
2,Q639669,musician,person who composes, conducts or performs music,Musician,38284
3,Q219150,Constantine,2005 film directed by Francis Lawrence,Constantine_(film),1210303
# root-entities.csv
entity,category
0,Q43416,actor
# predicates.csv
id,predicate,predicate_label,predicate_desc
0,P19,place of birth,location where the subject was born
1,P106,occupation,occupation of a person; see also "field of work" (Property:P101), "position held" (Property:P39)
2,P161,cast member,actor in the subject production [use "character role" (P453) and/or "name of the character role" (P4633) as qualifiers] [use "voice actor" (P725) for voice-only role]
# triples.csv
subject,predicate,object
0,0,1
0,1,2
3,2,0
# ground-truth.csv
root_entity,subject,predicate,object
0,0,0,1
3,3,2,0

GraphML Example

The same graph can be represented in GraphML format, available in the dataset details tabel

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
    <key id="d9" for="edge" attr.name="summary_for" attr.type="string"/>
    <key id="d8" for="edge" attr.name="predicate_desc" attr.type="string"/>
    <key id="d7" for="edge" attr.name="predicate_label" attr.type="string"/>
    <key id="d6" for="edge" attr.name="predicate" attr.type="string"/>
    <key id="d5" for="node" attr.name="category" attr.type="string"/>
    <key id="d4" for="node" attr.name="is_root" attr.type="boolean"/>
    <key id="d3" for="node" attr.name="wikidata_desc" attr.type="string"/>
    <key id="d2" for="node" attr.name="wikipedia_title" attr.type="string"/>
    <key id="d1" for="node" attr.name="wikipedia_id" attr.type="long"/>
    <key id="d0" for="node" attr.name="wikidata_label" attr.type="string"/>
    <graph edgedefault="directed">
        <node id="Q43416">
            <data key="d0">Keanu Reeves</data>
            <data key="d1">16603</data>
            <data key="d2">Keanu_Reeves</data>
            <data key="d3">Canadian actor (born 1964)</data>
            <data key="d4">True</data>
            <data key="d5">actor</data>
        </node>
        <node id="Q3820">
            <data key="d0">Beirut</data>
            <data key="d1">37428</data>
            <data key="d2">Beirut</data>
            <data key="d3">capital and largest city of Lebanon</data>
        </node>
        <node id="Q639669">
            <data key="d0">musician</data>
            <data key="d1">38284</data>
            <data key="d2">Musician</data>
            <data key="d3">person who composes, conducts or performs music</data>
        </node>
        <node id="Q219150">
            <data key="d0">Constantine</data>
            <data key="d1">1210303</data>
            <data key="d2">Constantine_(film)</data>
            <data key="d3">2005 film directed by Francis Lawrence</data>
        </node>
        <edge source="Q43416" target="Q3820" id="P19">
            <data key="d6">P19</data>
            <data key="d7">place of birth</data>
            <data key="d8">location where the subject was born</data>
            <data key="d9">Q43416</data>
        </edge>
        <edge source="Q43416" target="Q639669" id="P106">
            <data key="d6">P106</data>
            <data key="d7">occupation</data>
            <data key="d8">occupation of a person; see also "field of work" (Property:P101), "position held"
                (Property:P39)
            </data>
        </edge>
        <edge source="Q219150" target="Q43416" id="P106">
            <data key="d6">P161</data>
            <data key="d7">cast member</data>
            <data key="d8">actor in the subject production [use "character role" (P453) and/or "name of the character
                role" (P4633) as qualifiers] [use "voice actor" (P725) for voice-only role]
            </data>
            <data key="d9">Q43416</data>
        </edge>
    </graph>
</graphml>

Usage

Generate a New Dataset

To get started with this project, first clone this repository and install the necessary dependencies using Poetry.

git clone https://github.com/yourusername/wiki-entity-summarization.git
cd wiki-entity-summarization
curl -sSL https://install.python-poetry.org | python3 -
poetry config virtualenvs.in-project true
poetry install
poetry shell

# You can set the parameters via .env file instead of providing command line arguments.
cp .env_sample .env

python3 main.py [-h] [--min_valid_summary_edges MIN_VALID_SUMMARY_EDGES] 
                [--random_walk_depth_len RANDOM_WALK_DEPTH_LEN] [--bridges_number BRIDGES_NUMBER] 
                [--max_threads MAX_THREADS] [--output_path OUTPUT_PATH] [--db_name DB_NAME] [--db_user DB_USER] 
                [--db_password DB_PASSWORD] [--db_host DB_HOST] [--db_port DB_PORT] [--neo4j_user NEO4J_USER] 
                [--neo4j_password NEO4J_PASSWORD] [--neo4j_host NEO4J_HOST] [--neo4j_port NEO4J_PORT]
                [dataset_name] [min_random_walk_number] [max_random_walk_number] [seed_node_ids] [categories]
                
        options:
                -h, --help                Show this help message and exit
                --min_valid_summary_edges Minimum number of valid summaries for a seed ndoe
                --random_walk_depth_len   Depth length of random walks (number of nodes in each random walk)
                --bridges_number          Number of connecting path bridges between components
                --max_threads             Maximum number of threads
                --output_path             Path to save output data
                --db_name                 Database name
                --db_user                 Database user
                --db_password             Database password
                --db_host                 Database host
                --db_port                 Database port
                --neo4j_user              Neo4j user
                --neo4j_password          Neo4j password
                --neo4j_host              Neo4j host
                --neo4j_port              Neo4j port

        Positional arguments:
                dataset_name              The name of the dataset to process (required)
                min_random_walk_number    Minimum number of random walks for each seed node (required)
                max_random_walk_number    Maximum number of random walks for each seed node (required)
                seed_node_ids             Seed node ids in comma-separated format (required)
                categories                Seed node categories in comma-separated format (optional)

Re-generate WikES Dataset

To re-construct our pre-generated datasets, you can use the following command:

python3 human_history_dataset.py

This project uses our pre-processor project databases. Make sure you have loaded the data and run the databases properly.

Citation

If you use this project in your research, please cite the following paper:

@misc{javadi2024wiki,
    title = {Wiki Entity Summarization Benchmark},
    author = {Saeedeh Javadi and Atefeh Moradan and Mohammad Sorkhpar and Klim Zaporojets and Davide Mottin and Ira Assent},
    year = {2024},
    eprint = {2406.08435},
    archivePrefix = {arXiv},
    primaryClass = {cs.IR}
}

License

This project and its released datasets are licensed under the CC BY 4.0 License. See the LICENSE file for details.

In the following, you can check other licenses that we used as external services, libraries, or software. By using this project, you accept the third parties' licenses.

  1. Wikipedia:
  2. Wikidata:
  3. Python:
  4. DistilBERT:
  5. Networkx:
  6. Postgres:
  7. Neo4j:
  8. Docker:
  9. PyTorch:
  10. Scikit-learn:
  11. Pandas:
  12. Numpy:
  13. Java-open:
  14. Spring framework:
  15. Other libraries:

About

This repository hosts a comprehensive suite for graph-based entity summarization dataset generating from user-selected Wikipedia pages. Utilizing a series of interconnected modules, it leverages Wikidata and Wikipedia dumps to construct a dataset, alongside auto-generated ground truths.

Topics

Resources

License

Stars

Watchers

Forks

Contributors 3

  •  
  •  
  •