-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtranscriber.py
222 lines (179 loc) · 7.1 KB
/
transcriber.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import asyncio
import base64
import json
import wave
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Callable, AsyncIterator
import numpy as np
import sounddevice as sd
from faster_whisper import WhisperModel
@dataclass
class TranscriptionSegment:
start: float
end: float
text: str
@dataclass
class TranscriptionResult:
language: str
language_probability: float
segments: List[TranscriptionSegment]
class AudioConfig:
def __init__(
self, sample_rate: int = 16000, channels: int = 1, dtype: np.dtype = np.int16
):
self.sample_rate = sample_rate
self.channels = channels
self.dtype = dtype
class AudioRecorder:
def __init__(
self,
config: AudioConfig,
on_speech_start: Optional[Callable] = None,
on_speech_end: Optional[Callable] = None,
):
self.config = config
self.background_noise_level = None
self.silence_threshold = None
self.on_speech_start = on_speech_start
self.on_speech_end = on_speech_end
async def _calibrate_noise(self, chunk_duration: float = 0.1) -> None:
"""Calibrate background noise asynchronously"""
chunk_samples = int(chunk_duration * self.config.sample_rate)
calibration_chunks = int(1.0 / chunk_duration) # 1 second calibration
noise_levels = []
for _ in range(calibration_chunks):
chunk = sd.rec(
chunk_samples,
samplerate=self.config.sample_rate,
channels=self.config.channels,
dtype=self.config.dtype,
)
sd.wait()
rms = self._calculate_rms(chunk)
noise_levels.append(rms)
await asyncio.sleep(0.001) # Allow other tasks to run
self.background_noise_level = np.mean(noise_levels)
self.silence_threshold = self.background_noise_level * 2.5
def _calculate_rms(self, audio_chunk: np.ndarray) -> float:
if audio_chunk.size == 0 or np.all(audio_chunk == 0):
return 0.0
return np.sqrt(np.mean(np.square(audio_chunk.astype(float))))
async def record_until_silence(
self,
max_duration: float = 30,
chunk_duration: float = 0.1,
min_silence_duration: float = 1.0,
) -> AsyncIterator[np.ndarray]:
"""Record audio asynchronously until silence is detected"""
await self._calibrate_noise(chunk_duration)
chunk_samples = int(chunk_duration * self.config.sample_rate)
speech_started = False
silence_chunks = 0
required_silence_chunks = int(min_silence_duration / chunk_duration)
start_time = asyncio.get_event_loop().time()
while (asyncio.get_event_loop().time() - start_time) < max_duration:
chunk = sd.rec(
chunk_samples,
samplerate=self.config.sample_rate,
channels=self.config.channels,
dtype=self.config.dtype,
)
sd.wait()
current_rms = self._calculate_rms(chunk)
is_silence = current_rms <= float(
self.silence_threshold if not None else 0.0
)
if not speech_started and not is_silence:
speech_started = True
if self.on_speech_start:
self.on_speech_start()
if speech_started:
yield chunk
if is_silence:
silence_chunks += 1
if silence_chunks >= required_silence_chunks:
if self.on_speech_end:
self.on_speech_end()
break
else:
silence_chunks = 0
await asyncio.sleep(0.001)
class WhisperTranscriber:
def __init__(self, model_size: str = "large-v3"):
self.model = self._initialize_model(model_size)
def _initialize_model(self, model_size: str) -> WhisperModel:
try:
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
compute_type = "float16" if device == "cuda" else "int8"
except ImportError:
device = "cpu"
compute_type = "int8"
return WhisperModel(model_size, device=device, compute_type=compute_type)
async def transcribe_stream(
self, audio_stream: AsyncIterator[np.ndarray], temp_file: Path
) -> TranscriptionResult:
"""Transcribe audio from async stream"""
# Collect all chunks first to ensure we have valid audio data
chunks = []
async for chunk in audio_stream:
if chunk is not None and chunk.size > 0:
chunks.append(chunk)
# Check if we have any valid audio data
if not chunks:
raise ValueError("No valid audio data received")
# Get channel count from the first chunk
first_chunk = chunks[0]
n_channels = first_chunk.shape[1] if len(first_chunk.shape) > 1 else 1
with wave.open(str(temp_file), "wb") as wf:
wf.setnchannels(n_channels)
wf.setsampwidth(first_chunk.dtype.itemsize)
wf.setframerate(16000) # Default sample rate
for chunk in chunks:
wf.writeframes(chunk.tobytes())
return await self.transcribe_file(temp_file)
async def transcribe_file(self, audio_path: Path) -> TranscriptionResult:
"""Transcribe audio file asynchronously"""
segments, info = self.model.transcribe(str(audio_path))
return TranscriptionResult(
language=info.language,
language_probability=info.language_probability,
segments=[
TranscriptionSegment(
start=segment.start, end=segment.end, text=segment.text
)
for segment in segments
],
)
class TranscriptionService:
def __init__(
self, audio_config: Optional[AudioConfig] = None, model_size: str = "large-v3"
):
self.audio_config = audio_config or AudioConfig()
self.transcriber = WhisperTranscriber(model_size)
self.recorder = AudioRecorder(
self.audio_config,
on_speech_start=lambda: print("Speech detected"),
on_speech_end=lambda: print("Speech ended"),
)
async def transcribe_speech(
self,
max_duration: float = 30,
silence_duration: float = 1.5,
temp_path: Optional[Path] = None,
) -> TranscriptionResult:
temp_path = temp_path or Path("temp_audio.wav")
audio_stream = self.recorder.record_until_silence(
max_duration=max_duration, min_silence_duration=silence_duration
)
return await self.transcriber.transcribe_stream(audio_stream, temp_path)
# Example usage
async def main():
service = TranscriptionService()
result = await service.transcribe_speech()
print(f"\nDetected language: {result.language}")
for segment in result.segments:
print(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}")
if __name__ == "__main__":
asyncio.run(main())