-
Notifications
You must be signed in to change notification settings - Fork 9
/
classDSM.py
251 lines (161 loc) · 7.9 KB
/
classDSM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# __author__ = 'Prakhar'
# Created 8/08/2017
# Last edit 8/07/2018 - changed majority voting to more than 5
# Edit : Fixed extent of filter window
# Purpose: Make a class which can provide object To obtain DTM and nDSM from DSM . Follows from algo in advanced DTM generation from very high resolution satellite stereo images
# (1) : Read Gauss smoothened image and generate hole DEM
# (2) : Fill holes using Krigging/TIN based interpolation and genrate proper DEM
# (3) : Genrate nDSM and built height estimation
# (4) : Using classified vector of Landsat built area, find heights
# (5) : reeample it to 750 m and pair with NL and plot NL vs Height
# terminology used:
'''# output filenames produced
'''
import numpy as np
import math as math
from matplotlib import pyplot as plt
from scipy.interpolate import griddata
import cv2 as cv
# pvt imports
# * * * * * # * * * * * *# # * * * * * * # * * * * * * # * * *# Step0: Initialize * * * * * # * * * * * *# # * * * * * * # * * * * * * # * * * * * *#
class DSMtrans():
def __init__(self, DSM):
self.city = None
self.prod = None
self.DSM = DSM
# constraints/ thresholds
self.resolution = 30 # resolution in metres of a pixel
self.Ext = 300 # Extent of examining neighbors in metres: for 10m _ 200; for 30m - 3000
self.dThrHeightDiff = 3 # height difference in meter. >=threshold is non-ground
self.dThrSlope = 60 # degrees using 60 degress for 30m as difficult to identify ground terrain otherwise
# 8 directions
self.scanlines = [[-1, -1], [-1, 0], [-1, 1], [0, 1], [1, 1], [1, 0], [1, -1], [0, -1]]
self.scannum = [0, 1, 2, 3, 4, 5, 6, 7] # keyname for scanlines
# * * * * * # * * * * * *# # * * * * * * # * * * * * * # * *# Step 1: prepare DTM with holes * * * * * # * * * * * *# # * * * * * * # * * * * * * # * * * * * *#
# function to do gaussian smoeethening on inital DSM to get approximate surface
def Gaussiansmooth(self, DSM):
# Gaussian blurred image
DSMs = cv.GaussianBlur(src = DSM, ksize = (2*int(100/(2*self.resolution))+1, 2*int(100/(2*self.resolution))+1), sigmaX = 25, sigmaY = 25)
return DSMs
# function to generate neghbors in the direction of scan line
def neighborhood(self, arr, dir, c0):
dict_scannum = {
0 : np.diag(arr),
1 : arr[:,c0],
2 : np.diag(np.fliplr(arr)),
3 : np.fliplr(arr)[c0],
4 : np.diag(arr)[::-1],
5 : arr[:,c0][::-1],
6 : np.diag(np.fliplr(arr))[::-1],
7 : arr[c0]
}
return dict_scannum[dir]
# actual function for DTM generation
def DSM2DTM_scanline(self, DSM, DSMs):
print (' Entered DSM2DTM scanline')
# DSM - the DSM to be treated
# DSMs - smoothened DSM
# extent of filter window; it should be around 90meters depending on the resolution; aster - 5, for 10m - 15
self.iExt = np.int(self.Ext / (2 * self.resolution)) * 2 + 1
iExt = int(self.iExt)
dThrHeightDiff = self.dThrHeightDiff
dThrSlope = self.dThrSlope
resolution = self.resolution
# finding shape
[m,n] = np.shape(DSM)
#3 dim array with 8 2D bands will store the output of each pixel for each scanline
oLabel = np.zeros([8, m,n])
# running over the whole image
for x0 in range(0 + int((iExt - 1)/ 2 ),m - int((iExt - 1) / 2)):
for y0 in range(0 + int((iExt - 1) // 2), n - int((iExt - 1) // 2)):
# temporary subsetting the region around the pix
c0 = int((iExt-1)/2)
oDSM = DSM[x0 - c0:x0 + c0 + 1,y0 - c0:y0 + c0 + 1]
oDSMs = DSMs[x0 - c0:x0 + c0 + 1,y0 - c0:y0 + c0 + 1]
# running for each scanline
for scn in self.scannum:
# scanline direction
[iX, iY] = self.scanlines[scn]
# local height difference
oDSMDiff = oDSM[c0,c0] - DSM[x0 + iX,y0 + iY]
# local terrain slope
oDSMsDiff = oDSMs[c0,c0] - DSMs[x0 + iX,y0 + iY]
# get neighborhood(our filter extent)
oNeigh = self.neighborhood(oDSM, scn, c0)
#slope corrected height values
oNeighCorr = oNeigh - (self.neighborhood(oDSMs, scn, c0) - oDSMs[c0, c0])
# slope corrected minimal terrain value
oMinNeigh = np.nanmin(oNeighCorr)
# difference to minimum
dHeightDiff = oDSM[c0, c0] - oMinNeigh
if (dHeightDiff > dThrHeightDiff):
#pixel is non - ground (0)
oLabel[scn, x0, y0] = 0
else :
# slope corrected height difference
dDelta = oDSMDiff - oDSMsDiff
dSignDelta = -np.sign(dDelta)
dSlopeLocal = math.atan2(abs(dDelta), resolution) * 180 / np.pi
#slope corrected angle
dSlope = dSlopeLocal * dSignDelta
if (dSlope > dThrSlope):
# pixel is non - ground (0)
oLabel[scn, x0, y0] = 0
else:
# assign as last label
oLabel[scn, x0, y0] = oLabel[scn, x0 - iX, y0 - iY]
if (dSlope < 0):
#pixel is ground (1)
oLabel[scn, x0][y0] = 1
# with file('oLabel_try.txt', 'w') as outfile:
# for slice in oLabel:
# np.savetxt(outfile, slice)
return oLabel
# Function end
# * * * * * # * * * * * *# # * * * * * * # * * * * * * # * *# Step 2: DEM * * * * * # * * * * * *# # * * * * * * # * * * * * * # * * * * * *#
# Fnction to fill holes in DEM array f
def fill_holes(self, f):
print ('filling holes')
# interpolating and filling holes
# from stack overflow different results for 2d interpolation with scipy.interpolate-gridddata
# http://stackoverflow.com/questions/40449024/different-results-for-2d-interpolation-with-scipy-interpolate-griddata
# make mask of all values to be filled
#mask = np.isnan(f)
maskobj = np.ma.masked_where(f==0, f)
mask = maskobj.mask
# final shape
lx, ly = f.shape
x, y = np.mgrid[0:lx, 0:ly]
# 'Fill it'
z = griddata(np.array([x[~mask].ravel(), y[~mask].ravel()]).T, f[~mask].ravel(), (x, y), method='linear')
return z
# Master function to to run everything and get oytput
def ground(self):
DSM = self.DSM
# get smoothenes DSM
DSMs = self.Gaussiansmooth(DSM)
# remove all -9999 values as nan
#DSM[DSM<=-9999.0] = np.nan
#DSMs[DSMs<=-9999.0] = np.nan
# finally run function to find DSM from DEM
oLabel = self.DSM2DTM_scanline(DSM, DSMs)
# Now Checking which pixels have sum of scanline direction >=5. If yes then ground
ground = DSM*(np.sum(oLabel, axis =0)>5)
# save ground as a raster
# srs.arr_to_raster(ground, DSMpath, '//Urbanheights/DEMholes_try.tif')
#ground[ground==0.0] = np.nan
# filling holes in the DEM
DEM = self.fill_holes(ground)
# smoothening the DEM
DEM = cv.GaussianBlur(src = DEM, ksize = (5,5), sigmaX = 5, sigmaY = 5)
# Generate nDSM
nDSM = DSM - DEM
# not sure if this is correct but coverting all <0 pixels to ground
#nDSM[nDSM<=0] = 0
# visualize nDSM
plt.imshow(nDSM)
print ('job done ')
return (DEM, nDSM)
# fucntion end