-
Notifications
You must be signed in to change notification settings - Fork 2
/
plot_prob_selfnoise.py
156 lines (131 loc) · 5.54 KB
/
plot_prob_selfnoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
"""
Read csv file with probability and number of expected events as function of
a and b values of Gutenberg-Richter relation and plot it up
"""
import matplotlib.pyplot as plt
# from matplotlib.mlab import griddata
from scipy.interpolate import griddata
import matplotlib.colors as colors
import numpy as np
import csv
from obspy.imaging.cm import pqlx
model = 'ice20'
snr = '50.0'
depth = '1.0km'
f1 = '0.100'
f2 = '1.000'
probfile = "{}_{}_{}_{}_{}_selfnoise_prob.csv".format(model, snr, depth, f1, f2)
nevfile = "{}_{}_{}_{}_{}_selfnoise_nev.csv".format(model, snr, depth, f1, f2)
m0totalfile = "{}_{}_{}_{}_{}_selfnoise_m0total.csv".format(model, snr, depth, f1, f2)
with open(probfile) as csvfile:
csvreader = csv.reader(csvfile)
csvdata = [r for r in csvreader]
csvdata = np.array(csvdata)
avals = np.array(csvdata[1:, 0], dtype='float')
bvals = np.array(csvdata[0, 1:], dtype='float')
probs = np.array(csvdata[1:, 1:], dtype='float')
with open(nevfile) as csvfile:
csvreader = csv.reader(csvfile)
csvdata = [r for r in csvreader]
csvdata = np.array(csvdata)
nevs = np.array(csvdata[1:, 1:], dtype='float')
# Subsample for plot
astep = 0.03125
bstep = 0.00625
aa = np.arange(avals.min(), avals.max() + astep, astep)
bb = np.arange(bvals.min(), bvals.max() + bstep, bstep)
grid_bb, grid_aa = np.meshgrid(bb, aa)
bgrid, agrid = np.meshgrid(bvals, avals)
zz = griddata((np.transpose(bgrid).flatten(), np.transpose(agrid).flatten()),
np.transpose(probs).flatten(),
(np.transpose(grid_bb), np.transpose(grid_aa)), method='linear')
# zz = griddata(np.transpose(bgrid).flatten(), np.transpose(agrid).flatten(),
# np.transpose(probs).flatten(),
# (np.transpose(grid_bb), np.transpose(grid_aa)), method='linear')
fig = plt.figure()
ax = plt.gca()
im = ax.pcolormesh(grid_bb, grid_aa, np.transpose(zz), cmap='gnuplot2')
plt.xlabel('b value')
plt.ylabel('a value')
cbar = fig.colorbar(im, ax=ax)
cbar.ax.set_ylabel('Probability of event detection')
# Add in contours at 95% and 99%
CS = plt.contour(grid_bb, grid_aa, np.transpose(zz),
levels=[0.5, 0.95, 0.99], colors='g')
plt.clabel(CS, inline=1, fontsize=10, fmt='%.2f')
# Add in some relevant models (G92, M06, MQS)
# # G92
# g92a = [4.55]
# g92b = [0.9]
# plt.plot(g92b, g92a, 'go', label="Golombek et al., 1992")
# # MQS
# MQSa = [4.8]
# MQSb = [1.0]
# plt.plot(MQSb, MQSa, 'ro', label="MQS blind test")
# # K06
# k06a = [3.0, 4.5, 5.0, 5.1, 6.7]
# k06b = [0.9375, 0.9375, 0.9375, 0.9375, 0.9375]
# plt.plot(k06b, k06a, 'co', label="Knapmeyer et al., 2006")
# Models A-D
plt.plot([1.0], [3.13], 'co', label='Model A', markersize=10,
markeredgewidth=1, markeredgecolor='k')
plt.plot([1.0], [3.63], 'co', label='Model B', markersize=10,
markeredgewidth=1, markeredgecolor='k')
plt.plot([1.0], [5.13], 'co', label='Model C', markersize=10,
markeredgewidth=1, markeredgecolor='k')
plt.plot([1.0], [5.63], 'co', label='Model D', markersize=10,
markeredgewidth=1, markeredgecolor='k')
# Preferred
plt.plot([1.0], [4.47], 'co', label='Preferred', markersize=10,
markeredgewidth=1, markeredgecolor='k')
plt.legend(loc=1)
# Add in contours for m0 total
with open(m0totalfile) as csvfile:
csvreader = csv.reader(csvfile)
csvdata = [r for r in csvreader]
csvdata = np.array(csvdata)
m0total = np.array(csvdata[1:, 1:], dtype='float')
zz = griddata((np.transpose(bgrid).flatten(), np.transpose(agrid).flatten()),
np.transpose(m0total).flatten(),
(np.transpose(grid_bb), np.transpose(grid_aa)), method='linear')
CS = plt.contour(grid_bb, grid_aa, np.transpose(zz),
levels=[1.e15, 1.e16, 1.e17, 1.e18, 1.e19, 1.e20], colors='r')
plt.clabel(CS, inline=1, fontsize=10, fmt='%g')
plotfile = "{}_{}_{}_{}_{}_selfnoise_probmatrix.png".format(model, snr, depth, f1, f2)
fig.savefig(plotfile)
# Make a similar plot for expected number of events
zz = griddata((np.transpose(bgrid).flatten(), np.transpose(agrid).flatten()),
np.transpose(nevs).flatten(),
(np.transpose(grid_bb), np.transpose(grid_aa)), method='linear',
fill_value=nevs.min())
fig = plt.figure()
ax = plt.gca()
im = ax.pcolormesh(grid_bb, grid_aa, np.transpose(zz),
norm=colors.LogNorm(vmin=zz.min(), vmax=zz.max()),
cmap='gnuplot2')
plt.xlabel('b value')
plt.ylabel('a value')
cbar = fig.colorbar(im, ax=ax)
cbar.ax.set_ylabel('Number of expected event detections')
# Models A-D
plt.plot([1.0], [3.13], 'co', label='Model A', markersize=10,
markeredgewidth=1, markeredgecolor='k')
plt.plot([1.0], [3.63], 'co', label='Model B', markersize=10,
markeredgewidth=1, markeredgecolor='k')
plt.plot([1.0], [5.13], 'co', label='Model C', markersize=10,
markeredgewidth=1, markeredgecolor='k')
plt.plot([1.0], [5.63], 'co', label='Model D', markersize=10,
markeredgewidth=1, markeredgecolor='k')
# Preferred
plt.plot([1.0], [4.47], 'co', label='Preferred', markersize=10,
markeredgewidth=1, markeredgecolor='k')
plt.legend(loc=1)
# Add in contours for m0 total
zz = griddata((np.transpose(bgrid).flatten(), np.transpose(agrid).flatten()),
np.transpose(m0total).flatten(),
(np.transpose(grid_bb), np.transpose(grid_aa)), method='linear')
CS = plt.contour(grid_bb, grid_aa, np.transpose(zz),
levels=[1.e15, 1.e16, 1.e17, 1.e18, 1.e19, 1.e20], colors='r')
plt.clabel(CS, inline=1, fontsize=10, fmt='%g')
plotfile = "{}_{}_{}_{}_{}_selfnoise_nevmatrix.png".format(model, snr, depth, f1, f2)
fig.savefig(plotfile)