-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
84 lines (72 loc) · 2.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
from dataclasses import fields, make_dataclass
from pathlib import Path
from sequoia.common import Config
from sequoia.common.config import WandbConfig
from sequoia.common.hparams import HyperParameters
from sequoia.settings.sl import ClassIncrementalSetting
from simple_parsing import ArgumentParser
from real_deel_dark_experience import METHODS_MAPPING
def prepare_args():
parser = ArgumentParser()
hparams = {}
for Method in METHODS_MAPPING.values():
[
hparams.update({hparam.name: (hparam.name, hparam.type, hparam)})
for hparam in fields(Method.HParams())
]
hparams = make_dataclass("dynamic", tuple(hparams.values()))
parser.add_arguments(hparams, "hparams")
args, unknown = parser.parse_known_args()
return args
def main():
args = prepare_args()
assert args.hparams.cl_method_name in METHODS_MAPPING
Method = METHODS_MAPPING[args.hparams.cl_method_name]
method = Method.from_argparse_args(args)
# prepare output path
if not (os.path.isdir(args.hparams.output_dir)):
os.makedirs(args.hparams.output_dir)
os.mkdir(os.path.join(args.hparams.output_dir, "wandb"))
os.mkdir(os.path.join(args.hparams.output_dir, "data"))
wandb_config = None
if args.hparams.wandb or args.hparams.wandb_logging:
wandb_config = WandbConfig(
project=args.hparams.wandb_project,
entity=args.hparams.wandb_entity,
wandb_api_key=args.hparams.wandb_api,
run_name=args.hparams.wandb_run_name,
wandb_path=Path(os.path.join(args.hparams.output_dir, "wandb")),
)
if args.hparams.debug_mode:
os.environ["WANDB_MODE"] = "dryrun"
setting = ClassIncrementalSetting(
dataset="mnist",
nb_tasks=5,
monitor_training_performance=True,
wandb=wandb_config,
batch_size=16,
)
else:
# - "HARD": Class-Incremental Synbols, more challenging.
# NOTE: This Setting is very similar to the one used for the SL track of the
# competition.
# from sequoia.client.setting_proxy import SettingProxy
# setting = SettingProxy(ClassIncrementalSetting, "sl_track.yaml")
setting = ClassIncrementalSetting(
dataset="synbols",
nb_tasks=method.hparams.sl_nb_tasks,
known_task_boundaries_at_test_time=False,
monitor_training_performance=True,
batch_size=method.hparams.batch_size,
num_workers=4,
wandb=wandb_config,
)
# NOTE: can also use pass a `Config` object to `setting.apply`. This object has some
# configuration options like device, data_dir, etc.
results = setting.apply(
method, config=Config(data_dir=os.path.join(args.hparams.output_dir, "data"))
)
return results
if __name__ == "__main__":
results = main()