-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGAN_171103.py
726 lines (566 loc) · 34.2 KB
/
GAN_171103.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# %matplotlib inline
plt.style.use('ggplot')
import xgboost as xgb
import pickle
import gc
import os
import sys
from keras import applications
from keras import backend as K
from keras import layers
from keras import models
from keras import optimizers
import tensorflow as tf
def BaseMetrics(y_pred,y_true):
TP = np.sum( (y_pred == 1) & (y_true == 1) )
TN = np.sum( (y_pred == 0) & (y_true == 0) )
FP = np.sum( (y_pred == 1) & (y_true == 0) )
FN = np.sum( (y_pred == 0) & (y_true == 1) )
return TP, TN, FP, FN
def SimpleMetrics(y_pred,y_true):
TP, TN, FP, FN = BaseMetrics(y_pred,y_true)
ACC = ( TP + TN ) / ( TP + TN + FP + FN )
# Reporting
from IPython.display import display
print( 'Confusion Matrix')
display( pd.DataFrame( [[TN,FP],[FN,TP]], columns=['Pred 0','Pred 1'], index=['True 0', 'True 1'] ) )
print( 'Accuracy : {}'.format( ACC ))
def SimpleAccuracy(y_pred,y_true):
TP, TN, FP, FN = BaseMetrics(y_pred,y_true)
ACC = ( TP + TN ) / ( TP + TN + FP + FN )
return ACC
def get_data_batch(train, batch_size, seed=0):
# # random sampling - some samples will have excessively low or high sampling, but easy to implement
# np.random.seed(seed)
# x = train.loc[ np.random.choice(train.index, batch_size) ].values
# iterate through shuffled indices, so every sample gets covered evenly
start_i = (batch_size * seed) % len(train)
stop_i = start_i + batch_size
shuffle_seed = (batch_size * seed) // len(train)
np.random.seed(shuffle_seed)
train_ix = np.random.choice( list(train.index), replace=False, size=len(train) ) # wasteful to shuffle every time
train_ix = list(train_ix) + list(train_ix) # duplicate to cover ranges past the end of the set
x = train.loc[ train_ix[ start_i: stop_i ] ].values
return np.reshape(x, (batch_size, -1) )
def CheckAccuracy( x, g_z, data_cols, label_cols=[], seed=0, with_class=False, data_dim=2 ):
# Slightly slower code to create dataframes to feed into the xgboost dmatrix formats
# real_samples = pd.DataFrame(x, columns=data_cols+label_cols)
# gen_samples = pd.DataFrame(g_z, columns=data_cols+label_cols)
# real_samples['syn_label'] = 0
# gen_samples['syn_label'] = 1
# training_fraction = 0.5
# n_real, n_gen = int(len(real_samples)*training_fraction), int(len(gen_samples)*training_fraction)
# train_df = pd.concat([real_samples[:n_real],gen_samples[:n_gen]],axis=0)
# test_df = pd.concat([real_samples[n_real:],gen_samples[n_gen:]],axis=0)
# X_col = test_df.columns[:-1]
# y_col = test_df.columns[-1]
# dtrain = xgb.DMatrix(train_df[X_col], train_df[y_col], feature_names=X_col)
# dtest = xgb.DMatrix(test_df[X_col], feature_names=X_col)
# y_true = test_df['syn_label']
dtrain = np.vstack( [ x[:int(len(x)/2)], g_z[:int(len(g_z)/2)] ] ) # Use half of each real and generated set for training
dlabels = np.hstack( [ np.zeros(int(len(x)/2)), np.ones(int(len(g_z)/2)) ] ) # synthetic labels
dtest = np.vstack( [ x[int(len(x)/2):], g_z[int(len(g_z)/2):] ] ) # Use the other half of each set for testing
y_true = dlabels # Labels for test samples will be the same as the labels for training samples, assuming even batch sizes
dtrain = xgb.DMatrix(dtrain, dlabels, feature_names=data_cols+label_cols)
dtest = xgb.DMatrix(dtest, feature_names=data_cols+label_cols)
xgb_params = {
# 'tree_method': 'hist', # for faster evaluation
'max_depth': 4, # for faster evaluation
'objective': 'binary:logistic',
'random_state': 0,
'eval_metric': 'auc', # allows for balanced or unbalanced classes
}
xgb_test = xgb.train(xgb_params, dtrain, num_boost_round=10) # limit to ten rounds for faster evaluation
y_pred = np.round(xgb_test.predict(dtest))
# return '{:.2f}'.format(SimpleAccuracy(y_pred, y_true)) # assumes balanced real and generated datasets
return SimpleAccuracy(y_pred, y_true) # assumes balanced real and generated datasets
def PlotData( x, g_z, data_cols, label_cols=[], seed=0, with_class=False, data_dim=2, save=False, prefix='' ):
real_samples = pd.DataFrame(x, columns=data_cols+label_cols)
gen_samples = pd.DataFrame(g_z, columns=data_cols+label_cols)
f, axarr = plt.subplots(1, 2, figsize=(6,2) )
if with_class:
axarr[0].scatter( real_samples[data_cols[0]], real_samples[data_cols[1]], c=real_samples[label_cols[0]]/2 ) #, cmap='plasma' )
axarr[1].scatter( gen_samples[ data_cols[0]], gen_samples[ data_cols[1]], c=gen_samples[label_cols[0]]/2 ) #, cmap='plasma' )
# For when there are multiple one-hot encoded label columns
# for i in range(len(label_cols)):
# temp = real_samples.loc[ real_samples[ label_cols[i] ] == 1 ]
# axarr[0].scatter( temp[data_cols[0]], temp[data_cols[1]], c='C'+str(i), label=i )
# temp = gen_samples.loc[ gen_samples[ label_cols[i] ] == 1 ]
# axarr[1].scatter( temp[data_cols[0]], temp[data_cols[1]], c='C'+str(i), label=i )
else:
axarr[0].scatter( real_samples[data_cols[0]], real_samples[data_cols[1]]) #, cmap='plasma' )
axarr[1].scatter( gen_samples[data_cols[0]], gen_samples[data_cols[1]]) #, cmap='plasma' )
axarr[0].set_title('real')
axarr[1].set_title('generated')
axarr[0].set_ylabel(data_cols[1]) # Only add y label to left plot
for a in axarr: a.set_xlabel(data_cols[0]) # Add x label to both plots
axarr[1].set_xlim(axarr[0].get_xlim()), axarr[1].set_ylim(axarr[0].get_ylim()) # Use axes ranges from real data for generated data
if save:
plt.save( prefix + '.xgb_check.png' )
plt.show()
#### Functions to define the layers of the networks used in the 'define_models' functions below
def generator_network(x, data_dim, base_n_count):
x = layers.Dense(base_n_count, activation='relu')(x)
x = layers.Dense(base_n_count*2, activation='relu')(x)
x = layers.Dense(base_n_count*4, activation='relu')(x)
x = layers.Dense(data_dim)(x)
return x
def generator_network_w_label(x, labels, data_dim, label_dim, base_n_count):
x = layers.concatenate([x,labels])
x = layers.Dense(base_n_count*1, activation='relu')(x) # 1
x = layers.Dense(base_n_count*2, activation='relu')(x) # 2
x = layers.Dense(base_n_count*4, activation='relu')(x)
# x = layers.Dense(base_n_count*4, activation='relu')(x) # extra
# x = layers.Dense(base_n_count*4, activation='relu')(x) # extra
x = layers.Dense(data_dim)(x)
x = layers.concatenate([x,labels])
return x
def discriminator_network(x, data_dim, base_n_count):
x = layers.Dense(base_n_count*4, activation='relu')(x)
# x = layers.Dropout(0.1)(x)
x = layers.Dense(base_n_count*2, activation='relu')(x)
# x = layers.Dropout(0.1)(x)
x = layers.Dense(base_n_count, activation='relu')(x)
x = layers.Dense(1, activation='sigmoid')(x)
# x = layers.Dense(1)(x)
return x
def critic_network(x, data_dim, base_n_count):
x = layers.Dense(base_n_count*4, activation='relu')(x)
# x = layers.Dropout(0.1)(x)
x = layers.Dense(base_n_count*2, activation='relu')(x) # 2
# x = layers.Dropout(0.1)(x)
x = layers.Dense(base_n_count*1, activation='relu')(x) # 1
# x = layers.Dense(base_n_count*4, activation='relu')(x) # extra
# x = layers.Dense(base_n_count*4, activation='relu')(x) # extra
# x = layers.Dense(1, activation='sigmoid')(x)
x = layers.Dense(1)(x)
return x
#### Functions to define the keras network models
def define_models_GAN(rand_dim, data_dim, base_n_count, type=None):
generator_input_tensor = layers.Input(shape=(rand_dim, ))
generated_image_tensor = generator_network(generator_input_tensor, data_dim, base_n_count)
generated_or_real_image_tensor = layers.Input(shape=(data_dim,))
if type == 'Wasserstein':
discriminator_output = critic_network(generated_or_real_image_tensor, data_dim, base_n_count)
else:
discriminator_output = discriminator_network(generated_or_real_image_tensor, data_dim, base_n_count)
generator_model = models.Model(inputs=[generator_input_tensor], outputs=[generated_image_tensor], name='generator')
discriminator_model = models.Model(inputs=[generated_or_real_image_tensor],
outputs=[discriminator_output],
name='discriminator')
combined_output = discriminator_model(generator_model(generator_input_tensor))
combined_model = models.Model(inputs=[generator_input_tensor], outputs=[combined_output], name='combined')
return generator_model, discriminator_model, combined_model
def define_models_CGAN(rand_dim, data_dim, label_dim, base_n_count, type=None):
generator_input_tensor = layers.Input(shape=(rand_dim, ))
labels_tensor = layers.Input(shape=(label_dim,)) # updated for class
generated_image_tensor = generator_network_w_label(generator_input_tensor, labels_tensor, data_dim, label_dim, base_n_count) # updated for class
generated_or_real_image_tensor = layers.Input(shape=(data_dim + label_dim,)) # updated for class
if type == 'Wasserstein':
discriminator_output = critic_network(generated_or_real_image_tensor, data_dim + label_dim, base_n_count) # updated for class
else:
discriminator_output = discriminator_network(generated_or_real_image_tensor, data_dim + label_dim, base_n_count) # updated for class
generator_model = models.Model(inputs=[generator_input_tensor, labels_tensor], outputs=[generated_image_tensor], name='generator') # updated for class
discriminator_model = models.Model(inputs=[generated_or_real_image_tensor],
outputs=[discriminator_output],
name='discriminator')
combined_output = discriminator_model(generator_model([generator_input_tensor, labels_tensor])) # updated for class
combined_model = models.Model(inputs=[generator_input_tensor, labels_tensor], outputs=[combined_output], name='combined') # updated for class
return generator_model, discriminator_model, combined_model
#### Functions specific to the WGAN architecture
#### The train discrimnator step is separated out to facilitate pre-training of the discriminator by itself
def em_loss(y_coefficients, y_pred):
# define earth mover distance (wasserstein loss)
# literally the weighted average of the critic network output
# this is defined separately so it can be fed as a loss function to the optimizer in the WGANs
return tf.reduce_mean(tf.multiply(y_coefficients, y_pred))
def train_discriminator_step(model_components, seed=0):
[ cache_prefix, with_class, starting_step,
train, data_cols, data_dim,
label_cols, label_dim,
generator_model, discriminator_model, combined_model,
rand_dim, nb_steps, batch_size,
k_d, k_g, critic_pre_train_steps, log_interval, learning_rate, base_n_count,
data_dir, generator_model_path, discriminator_model_path,
sess, _z, _x, _labels, _g_z, epsilon, x_hat, gradients, _gradient_penalty,
_disc_loss_generated, _disc_loss_real, _disc_loss, disc_optimizer,
show,
combined_loss, disc_loss_generated, disc_loss_real, xgb_losses
] = model_components
if with_class:
d_l_g, d_l_r, _ = sess.run([_disc_loss_generated, _disc_loss_real, disc_optimizer], feed_dict={
_z: np.random.normal(size=(batch_size, rand_dim)),
_x: get_data_batch(train, batch_size, seed=seed),
_labels: get_data_batch(train, batch_size, seed=seed)[:,-label_dim:], # .reshape(-1,label_dim), # updated for class
epsilon: np.random.uniform(low=0.0, high=1.0, size=(batch_size, 1))
})
else:
d_l_g, d_l_r, _ = sess.run([_disc_loss_generated, _disc_loss_real, disc_optimizer], feed_dict={
_z: np.random.normal(size=(batch_size, rand_dim)),
_x: get_data_batch(train, batch_size, seed=seed),
epsilon: np.random.uniform(low=0.0, high=1.0, size=(batch_size, 1))
})
return d_l_g, d_l_r
def training_steps_WGAN(model_components):
[ cache_prefix, with_class, starting_step,
train, data_cols, data_dim,
label_cols, label_dim,
generator_model, discriminator_model, combined_model,
rand_dim, nb_steps, batch_size,
k_d, k_g, critic_pre_train_steps, log_interval, learning_rate, base_n_count,
data_dir, generator_model_path, discriminator_model_path,
sess, _z, _x, _labels, _g_z, epsilon, x_hat, gradients, _gradient_penalty,
_disc_loss_generated, _disc_loss_real, _disc_loss, disc_optimizer,
show,
combined_loss, disc_loss_generated, disc_loss_real, xgb_losses
] = model_components
for i in range(starting_step, starting_step+nb_steps):
K.set_learning_phase(1) # 1 = train
# train the discriminator
for j in range(k_d):
d_l_g, d_l_r = train_discriminator_step(model_components, seed=i+j)
disc_loss_generated.append(d_l_g)
disc_loss_real.append(d_l_r)
# train the generator
for j in range(k_g):
np.random.seed(i+j)
z = np.random.normal(size=(batch_size, rand_dim))
if with_class:
labels = get_data_batch(train, batch_size, seed=i+j)[:,-label_dim:] # updated for class
loss = combined_model.train_on_batch([z, labels], [-np.ones(batch_size)]) # updated for class
else:
loss = combined_model.train_on_batch(z, [-np.ones(batch_size)])
combined_loss.append(loss)
# Determine xgb loss each step, after training generator and discriminator
if not i % 10: # 2x faster than testing each step...
K.set_learning_phase(0) # 0 = test
test_size = 492 # test using all of the actual fraud data
x = get_data_batch(train, test_size, seed=i)
z = np.random.normal(size=(test_size, rand_dim))
if with_class:
labels = x[:,-label_dim:]
g_z = generator_model.predict([z, labels])
else:
g_z = generator_model.predict(z)
xgb_loss = CheckAccuracy( x, g_z, data_cols, label_cols, seed=0, with_class=with_class, data_dim=data_dim )
xgb_losses = np.append(xgb_losses, xgb_loss)
if not i % log_interval:
print('Step: {} of {}.'.format(i, starting_step + nb_steps))
# K.set_learning_phase(0) # 0 = test
# loss summaries
print( 'Losses: G, D Gen, D Real, Xgb: {:.4f}, {:.4f}, {:.4f}, {:.4f}'.format(combined_loss[-1], disc_loss_generated[-1], disc_loss_real[-1], xgb_losses[-1]) )
print( 'D Real - D Gen: {:.4f}'.format(disc_loss_real[-1]-disc_loss_generated[-1]) )
# print('Generator model loss: {}.'.format(combined_loss[-1]))
# print('Discriminator model loss gen: {}.'.format(disc_loss_generated[-1]))
# print('Discriminator model loss real: {}.'.format(disc_loss_real[-1]))
# print('xgboost accuracy: {}'.format(xgb_losses[-1]) )
if show:
PlotData( x, g_z, data_cols, label_cols, seed=0, with_class=with_class, data_dim=data_dim,
save=False, prefix= data_dir + cache_prefix + '_' + str(i) )
# save model checkpoints
model_checkpoint_base_name = data_dir + cache_prefix + '_{}_model_weights_step_{}.h5'
generator_model.save_weights(model_checkpoint_base_name.format('generator', i))
discriminator_model.save_weights(model_checkpoint_base_name.format('discriminator', i))
pickle.dump([combined_loss, disc_loss_generated, disc_loss_real, xgb_losses],
open( data_dir + cache_prefix + '_losses_step_{}.pkl'.format(i) ,'wb'))
return [combined_loss, disc_loss_generated, disc_loss_real, xgb_losses]
def adversarial_training_WGAN(arguments, train, data_cols, label_cols=[], seed=0, starting_step=0):
[rand_dim, nb_steps, batch_size,
k_d, k_g, critic_pre_train_steps, log_interval, learning_rate, base_n_count,
data_dir, generator_model_path, discriminator_model_path, loss_pickle_path, show ] = arguments
np.random.seed(seed) # set random seed
data_dim = len(data_cols)
print('data_dim: ', data_dim)
print('data_cols: ', data_cols)
label_dim = 0
with_class = False
if len(label_cols) > 0:
with_class = True
label_dim = len(label_cols)
print('label_dim: ', label_dim)
print('label_cols: ', label_cols)
# define network models
K.set_learning_phase(1) # 1 = train
if with_class:
cache_prefix = 'WCGAN'
generator_model, discriminator_model, combined_model = define_models_CGAN(rand_dim, data_dim, label_dim, base_n_count, type='Wasserstein')
else:
cache_prefix = 'WGAN'
generator_model, discriminator_model, combined_model = define_models_GAN(rand_dim, data_dim, base_n_count, type='Wasserstein')
# construct computation graph for calculating the gradient penalty (improved WGAN) and training the discriminator
_z = tf.placeholder(tf.float32, shape=(batch_size, rand_dim))
_labels = None
if with_class:
_x = tf.placeholder(tf.float32, shape=(batch_size, data_dim + label_dim))
_labels = tf.placeholder(tf.float32, shape=(batch_size, label_dim)) # updated for class
_g_z = generator_model(inputs=[_z, _labels]) # updated for class
else:
_x = tf.placeholder(tf.float32, shape=(batch_size, data_dim))
_g_z = generator_model(_z)
epsilon = tf.placeholder(tf.float32, shape=(batch_size, 1))
x_hat = epsilon * _x + (1.0 - epsilon) * _g_z
gradients = tf.gradients(discriminator_model(x_hat), [x_hat])
_gradient_penalty = 10.0 * tf.square(tf.norm(gradients[0], ord=2) - 1.0)
# calculate discriminator's loss
_disc_loss_generated = em_loss(tf.ones(batch_size), discriminator_model(_g_z))
_disc_loss_real = em_loss(tf.ones(batch_size), discriminator_model(_x))
_disc_loss = _disc_loss_generated - _disc_loss_real + _gradient_penalty
# update f by taking an SGD step on mini-batch loss LD(f)
disc_optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, beta2=0.9).minimize(
_disc_loss, var_list=discriminator_model.trainable_weights)
sess = K.get_session()
# compile models
adam = optimizers.Adam(lr=learning_rate, beta_1=0.5, beta_2=0.9)
discriminator_model.trainable = False
combined_model.compile(optimizer=adam, loss=[em_loss])
combined_loss, disc_loss_generated, disc_loss_real, xgb_losses = [], [], [], []
model_components = [ cache_prefix, with_class, starting_step,
train, data_cols, data_dim,
label_cols, label_dim,
generator_model, discriminator_model, combined_model,
rand_dim, nb_steps, batch_size,
k_d, k_g, critic_pre_train_steps, log_interval, learning_rate, base_n_count,
data_dir, generator_model_path, discriminator_model_path,
sess, _z, _x, _labels, _g_z, epsilon, x_hat, gradients, _gradient_penalty,
_disc_loss_generated, _disc_loss_real, _disc_loss, disc_optimizer,
show,
combined_loss, disc_loss_generated, disc_loss_real, xgb_losses
]
if show:
print(generator_model.summary())
print(discriminator_model.summary())
print(combined_model.summary())
if loss_pickle_path:
print('Loading loss pickles')
[combined_loss, disc_loss_generated, disc_loss_real, xgb_losses] = pickle.load(open(loss_pickle_path,'rb'))
if generator_model_path:
print('Loading generator model')
generator_model.load_weights(generator_model_path) #, by_name=True)
if discriminator_model_path:
print('Loading discriminator model')
discriminator_model.load_weights(discriminator_model_path) #, by_name=True)
else:
print('pre-training the critic...')
K.set_learning_phase(1) # 1 = train
for i in range(critic_pre_train_steps):
if i%20==0:
print('Step: {} of {} critic pre-training.'.format(i, critic_pre_train_steps))
loss = train_discriminator_step(model_components, seed=i)
print('Last batch of critic pre-training disc_loss: {}.'.format(loss))
model_components = [ cache_prefix, with_class, starting_step,
train, data_cols, data_dim,
label_cols, label_dim,
generator_model, discriminator_model, combined_model,
rand_dim, nb_steps, batch_size,
k_d, k_g, critic_pre_train_steps, log_interval, learning_rate, base_n_count,
data_dir, generator_model_path, discriminator_model_path,
sess, _z, _x, _labels, _g_z, epsilon, x_hat, gradients, _gradient_penalty,
_disc_loss_generated, _disc_loss_real, _disc_loss, disc_optimizer,
show,
combined_loss, disc_loss_generated, disc_loss_real, xgb_losses
]
[combined_loss, disc_loss_generated, disc_loss_real, xgb_losses] = training_steps_WGAN(model_components)
#### Functions specific to the vanilla GAN architecture
def training_steps_GAN(model_components):
[ cache_prefix, with_class, starting_step,
train, data_cols, data_dim,
label_cols, label_dim,
generator_model, discriminator_model, combined_model,
rand_dim, nb_steps, batch_size,
k_d, k_g, critic_pre_train_steps, log_interval, learning_rate, base_n_count,
data_dir, generator_model_path, discriminator_model_path, show,
combined_loss, disc_loss_generated, disc_loss_real, xgb_losses ] = model_components
for i in range(starting_step, starting_step+nb_steps):
K.set_learning_phase(1) # 1 = train
# train the discriminator
for j in range(k_d):
np.random.seed(i+j)
z = np.random.normal(size=(batch_size, rand_dim))
x = get_data_batch(train, batch_size, seed=i+j)
if with_class:
labels = x[:,-label_dim:]
g_z = generator_model.predict([z, labels])
else:
g_z = generator_model.predict(z)
# x = np.vstack([x,g_z]) # code to train the discriminator on real and generated data at the same time, but you have to run network again for separate losses
# classes = np.hstack([np.zeros(batch_size),np.ones(batch_size)])
# d_l_r = discriminator_model.train_on_batch(x, classes)
d_l_r = discriminator_model.train_on_batch(x, np.random.uniform(low=0.999, high=1.0, size=batch_size)) # 0.7, 1.2 # GANs need noise to prevent loss going to zero
d_l_g = discriminator_model.train_on_batch(g_z, np.random.uniform(low=0.0, high=0.001, size=batch_size)) # 0.0, 0.3 # GANs need noise to prevent loss going to zero
# d_l_r = discriminator_model.train_on_batch(x, np.ones(batch_size)) # without noise
# d_l_g = discriminator_model.train_on_batch(g_z, np.zeros(batch_size)) # without noise
disc_loss_real.append(d_l_r)
disc_loss_generated.append(d_l_g)
# train the generator
for j in range(k_g):
np.random.seed(i+j)
z = np.random.normal(size=(batch_size, rand_dim))
if with_class:
# loss = combined_model.train_on_batch([z, labels], np.ones(batch_size)) # without noise
loss = combined_model.train_on_batch([z, labels], np.random.uniform(low=0.999, high=1.0, size=batch_size)) # 0.7, 1.2 # GANs need noise to prevent loss going to zero
else:
# loss = combined_model.train_on_batch(z, np.ones(batch_size)) # without noise
loss = combined_model.train_on_batch(z, np.random.uniform(low=0.999, high=1.0, size=batch_size)) # 0.7, 1.2 # GANs need noise to prevent loss going to zero
combined_loss.append(loss)
# Determine xgb loss each step, after training generator and discriminator
if not i % 10: # 2x faster than testing each step...
K.set_learning_phase(0) # 0 = test
test_size = 492 # test using all of the actual fraud data
x = get_data_batch(train, test_size, seed=i)
z = np.random.normal(size=(test_size, rand_dim))
if with_class:
labels = x[:,-label_dim:]
g_z = generator_model.predict([z, labels])
else:
g_z = generator_model.predict(z)
xgb_loss = CheckAccuracy( x, g_z, data_cols, label_cols, seed=0, with_class=with_class, data_dim=data_dim )
xgb_losses = np.append(xgb_losses, xgb_loss)
# Saving weights and plotting images
if not i % log_interval:
print('Step: {} of {}.'.format(i, starting_step + nb_steps))
K.set_learning_phase(0) # 0 = test
# loss summaries
print( 'Losses: G, D Gen, D Real, Xgb: {:.4f}, {:.4f}, {:.4f}, {:.4f}'.format(combined_loss[-1], disc_loss_generated[-1], disc_loss_real[-1], xgb_losses[-1]) )
print( 'D Real - D Gen: {:.4f}'.format(disc_loss_real[-1]-disc_loss_generated[-1]) )
# print('Generator model loss: {}.'.format(combined_loss[-1]))
# print('Discriminator model loss gen: {}.'.format(disc_loss_generated[-1]))
# print('Discriminator model loss real: {}.'.format(disc_loss_real[-1]))
# print('xgboost accuracy: {}'.format(xgb_losses[-1]) )
if show:
PlotData( x, g_z, data_cols, label_cols, seed=0, with_class=with_class, data_dim=data_dim,
save=False, prefix= data_dir + cache_prefix + '_' + str(i) )
# save model checkpoints
model_checkpoint_base_name = data_dir + cache_prefix + '_{}_model_weights_step_{}.h5'
generator_model.save_weights(model_checkpoint_base_name.format('generator', i))
discriminator_model.save_weights(model_checkpoint_base_name.format('discriminator', i))
pickle.dump([combined_loss, disc_loss_generated, disc_loss_real, xgb_losses],
open( data_dir + cache_prefix + '_losses_step_{}.pkl'.format(i) ,'wb'))
return [combined_loss, disc_loss_generated, disc_loss_real, xgb_losses]
def adversarial_training_GAN(arguments, train, data_cols, label_cols=[], seed=0, starting_step=0):
[rand_dim, nb_steps, batch_size,
k_d, k_g, critic_pre_train_steps, log_interval, learning_rate, base_n_count,
data_dir, generator_model_path, discriminator_model_path, loss_pickle_path, show ] = arguments
np.random.seed(seed) # set random seed
data_dim = len(data_cols)
print('data_dim: ', data_dim)
print('data_cols: ', data_cols)
label_dim = 0
with_class = False
if len(label_cols) > 0:
with_class = True
label_dim = len(label_cols)
print('label_dim: ', label_dim)
print('label_cols: ', label_cols)
# define network models
K.set_learning_phase(1) # 1 = train
if with_class:
cache_prefix = 'CGAN'
generator_model, discriminator_model, combined_model = define_models_CGAN(rand_dim, data_dim, label_dim, base_n_count)
else:
cache_prefix = 'GAN'
generator_model, discriminator_model, combined_model = define_models_GAN(rand_dim, data_dim, base_n_count)
# compile models
adam = optimizers.Adam(lr=learning_rate, beta_1=0.5, beta_2=0.9)
generator_model.compile(optimizer=adam, loss='binary_crossentropy')
discriminator_model.compile(optimizer=adam, loss='binary_crossentropy')
discriminator_model.trainable = False
combined_model.compile(optimizer=adam, loss='binary_crossentropy')
if show:
print(generator_model.summary())
print(discriminator_model.summary())
print(combined_model.summary())
combined_loss, disc_loss_generated, disc_loss_real, xgb_losses = [], [], [], []
if loss_pickle_path:
print('Loading loss pickles')
[combined_loss, disc_loss_generated, disc_loss_real, xgb_losses] = pickle.load(open(loss_pickle_path,'rb'))
if generator_model_path:
print('Loading generator model')
generator_model.load_weights(generator_model_path, by_name=True)
if discriminator_model_path:
print('Loading discriminator model')
discriminator_model.load_weights(discriminator_model_path, by_name=True)
model_components = [ cache_prefix, with_class, starting_step,
train, data_cols, data_dim,
label_cols, label_dim,
generator_model, discriminator_model, combined_model,
rand_dim, nb_steps, batch_size,
k_d, k_g, critic_pre_train_steps, log_interval, learning_rate, base_n_count,
data_dir, generator_model_path, discriminator_model_path, show,
combined_loss, disc_loss_generated, disc_loss_real, xgb_losses ]
[combined_loss, disc_loss_generated, disc_loss_real, xgb_losses] = training_steps_GAN(model_components)
#### Functions specific to the DRAGAN architecture
#### Note the DRAGAN is implemented in tensorflow without Keras libraries
#### https://github.com/kodalinaveen3/DRAGAN
def sample_z(m, n): # updated to normal distribution
# return np.random.uniform(-1., 1., size=[m, n])
return np.random.normal(size=[m, n])
def xavier_init(size): # updated to uniform distribution using standard xavier formulation
# in_dim = size[0]
# xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
# return tf.random_normal(shape=size, stddev=xavier_stddev, seed=global_seed)
xavier_range = tf.sqrt( 6 / ( size[0] + size[1] ) )
return tf.random_uniform(shape=size, minval=-xavier_range, maxval=xavier_range)
def get_perturbed_batch(minibatch):
return minibatch + 0.5 * minibatch.std() * np.random.random(minibatch.shape)
def G(z, G_W, G_b): # The Generator Network
# for i in range(len(G_layer_dims)-2):
for i in range(len(G_W)-1):
z = tf.nn.relu(tf.matmul(z, G_W[i]) + G_b[i])
# print(i,G_W[i],z)
return tf.matmul(z, G_W[-1]) + G_b[-1]
def D(x, D_W, D_b): # The Discriminator Network
# for i in range(len(D_layer_dims)-2):
for i in range(len(D_W)-1):
x = tf.nn.relu(tf.matmul(x, D_W[i]) + D_b[i])
return tf.nn.sigmoid(tf.matmul(x, D_W[-1]) + D_b[-1])
def define_DRAGAN_network( X_dim=2, h_dim=128, z_dim=2, lambda0=10, learning_rate=1e-4, mb_size=128, seed=0 ):
X = tf.placeholder(tf.float32, shape=[None, X_dim], name='X' )
X_p = tf.placeholder(tf.float32, shape=[None, X_dim], name='X_p' )
z = tf.placeholder(tf.float32, shape=[None, z_dim], name='z' )
D_layer_dims = [X_dim, h_dim*4, h_dim*2, h_dim, 1 ]
D_W, D_b = [], []
for i in range(len(D_layer_dims)-1):
D_W.append( tf.Variable( xavier_init([D_layer_dims[i], D_layer_dims[i+1]] ), name='D_W'+str(i) ) )
# D_W.append( tf.Variable( initializer=tf.contrib.layers.xavier_initializer(seed=global_seed) ) # working towards using tf's own xavier initializer
D_b.append( tf.Variable( tf.zeros(shape=[D_layer_dims[i+1]]), name='D_b'+str(i) ) )
theta_D = D_W + D_b
G_layer_dims = [z_dim, h_dim, h_dim*2, h_dim*4, X_dim ]
G_W, G_b = [], []
for i in range(len(G_layer_dims)-1):
G_W.append( tf.Variable( xavier_init([G_layer_dims[i], G_layer_dims[i+1]] ), name='G_W'+str(i) ) )
G_b.append( tf.Variable( tf.zeros(shape=[G_layer_dims[i+1]]), name='g_b'+str(i) ) )
theta_G = G_W + G_b
# print( theta_D + theta_G )
G_sample = G(z, G_W, G_b)
D_real = D(X, D_W, D_b)
D_fake = D(G_sample, D_W, D_b)
D_real_perturbed = D(X_p, D_W, D_b)
# D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real, labels=tf.ones_like(D_real)))
# D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.zeros_like(D_fake)))
# disc_cost = D_loss_real + D_loss_fake
# gen_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.ones_like(D_fake)))
D_loss_real = tf.reduce_mean(tf.log( D_real ))
D_loss_fake = tf.reduce_mean(tf.log( 1 - D_fake ))
disc_cost = - D_loss_real - D_loss_fake
gen_cost = D_loss_fake
#Gradient penalty
alpha = tf.random_uniform(
shape=[mb_size,1],
minval=0.,
maxval=1.) # do not set seed
differences = X_p - X
interpolates = X + (alpha*differences)
gradients = tf.gradients(D(interpolates, D_W, D_b), [interpolates])[0]
# slopes = tf.sqrt(tf.reduce_sum(tf.square(gradients), reduction_indices=[1]))
# gradient_penalty = tf.reduce_mean((slopes-1.)**2)
gradient_penalty = tf.square(tf.norm(gradients, ord=2) - 1.0 ) # corrected?
disc_cost += lambda0 * gradient_penalty / mb_size # corrected?
G_solver = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, beta2=0.9).minimize(gen_cost, var_list=theta_G)
D_solver = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.5, beta2=0.9).minimize(disc_cost, var_list=theta_D)
return [ D_solver, disc_cost, D_loss_real, D_loss_fake,
X, X_p, z,
G_solver, gen_cost, G_sample ]
# End of function list