-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGUI.py
457 lines (374 loc) · 17.3 KB
/
GUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import re
import sys
from os import path
from functools import partial
import numpy as np
from skimage import transform as tf
from PyQt4 import QtGui, QtCore
import Dm3Reader3 as dm3
import Constants as const
import ImageSupport as imsup
import CrossCorr as cc
import Transform as tr
from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar
import matplotlib.pyplot as plt
import random
# --------------------------------------------------------
class LabelWithLabel(QtGui.QWidget):
def __init__(self, parent, labText='Label', defaultValue=''):
super(LabelWithLabel, self).__init__(parent)
self.label = QtGui.QLabel(defaultValue)
self.labelsLabel = QtGui.QLabel(labText)
self.initUI()
def initUI(self):
self.labelsLabel.setStyleSheet('font-size:10pt;')
self.label.setStyleSheet('font-size:16pt; background-color:white; border:1px solid rgb(0, 0, 0); text-align:center')
self.label.setAlignment(QtCore.Qt.AlignCenter)
vbox = QtGui.QVBoxLayout()
vbox.setMargin(0)
vbox.setSpacing(0)
vbox.addWidget(self.labelsLabel)
vbox.addWidget(self.label)
self.setLayout(vbox)
# --------------------------------------------------------
class LabelExt(QtGui.QLabel):
def __init__(self, parent):
super(LabelExt, self).__init__(parent)
def paintEvent(self, event):
super(LabelExt, self).paintEvent(event)
# if len(self.pointSets) == 0 or len(self.pointSets[0]) == 0:
# return
dotPen = QtGui.QPen(QtCore.Qt.red)
dotPen.setCapStyle(QtCore.Qt.RoundCap)
dotPen.setWidth(15)
qp = QtGui.QPainter()
qp.begin(self)
qp.setRenderHint(QtGui.QPainter.Antialiasing, True)
qp.setPen(dotPen)
if len(self.parent().pointSets) > 0:
for pt in self.parent().pointSets[0]:
qpt = QtCore.QPoint(pt[0], pt[1])
qp.drawPoint(qpt)
qp.end()
# --------------------------------------------------------
class PlotWidget(QtGui.QWidget):
def __init__(self, parent=None):
super(PlotWidget, self).__init__(parent)
self.figure = plt.figure()
self.canvas = FigureCanvas(self.figure)
self.toolbar = NavigationToolbar(self.canvas, self)
self.markedPoint = None
self.markedPointData = [0, 0]
self.canvas.mpl_connect('button_press_event', self.getXYDataOnClick)
# self.button = QtGui.QPushButton('Plot FFT')
# self.button.clicked.connect(self.plotRandom)
layout = QtGui.QVBoxLayout()
layout.addWidget(self.toolbar)
layout.addWidget(self.canvas)
# layout.addWidget(self.button)
self.setLayout(layout)
def plotRandom(self):
idxs = list(range(10))
data = [ random.random() for i in range(10) ]
self.figure.clear()
ax = self.figure.add_subplot(111)
ax.plot(idxs, data, '.-')
self.canvas.draw()
def plot(self, dataX, dataY, xlab='x', ylab='y'):
self.figure.clear()
plt.xlabel(xlab)
plt.ylabel(ylab)
plt.axis([ min(dataX)-0.5, max(dataX)+0.5, min(dataY)-0.5, max(dataY)+0.5 ])
ax = self.figure.add_subplot(111)
ax.plot(dataX, dataY, '.-')
self.canvas.draw()
def getXYDataOnClick(self, event):
if self.markedPoint is not None:
self.markedPoint.remove()
self.markedPoint, = plt.plot(event.xdata, event.ydata, 'ro')
self.markedPointData = [event.xdata, event.ydata]
# latConst = np.abs(1.0 / event.xdata)
# self.parent().latConstLabel.label.setText('{0:.2f} A'.format(latConst))
# print('Rec. dist. = {0:.2f} A^-1'.format(event.xdata))
# print('Lattice constant = {0:.2f} A'.format(latConst))
# --------------------------------------------------------
# def RunPlotWindow():
# app = QtGui.QApplication(sys.argv)
# main = PlotWidget()
# main.show()
# sys.exit(app.exec_())
# --------------------------------------------------------
class LatticeAnalyzerWidget(QtGui.QWidget):
def __init__(self):
super(LatticeAnalyzerWidget, self).__init__()
# self.display = QtGui.QLabel()
self.display = LabelExt(self)
imagePath = QtGui.QFileDialog.getOpenFileName()
self.image = LoadImageSeriesFromFirstFile(imagePath)
self.pointSets = []
self.plotWidget = PlotWidget()
self.latConstLabel = LabelWithLabel(self, 'Lattice constant', '0.0 A')
self.createPixmap()
self.initUI()
def initUI(self):
self.display.setFixedWidth(const.ccWidgetDim)
self.display.setFixedHeight(const.ccWidgetDim)
self.display.setAlignment(QtCore.Qt.AlignCenter)
# self.plotWidget.setFixedWidth(const.ccWidgetDim)
self.plotWidget.canvas.setFixedHeight(200)
prevButton = QtGui.QPushButton('Prev', self)
nextButton = QtGui.QPushButton('Next', self)
clearButton = QtGui.QPushButton('Clear', self)
startButton = QtGui.QPushButton('Start', self) # Get freq. distribution (FFT)
getLatConstButton = QtGui.QPushButton('Get lattice constant', self)
prevButton.clicked.connect(partial(self.changePixmap, False))
nextButton.clicked.connect(partial(self.changePixmap, True))
clearButton.clicked.connect(self.clearImage)
startButton.clicked.connect(self.calcHistogramWithRotation)
getLatConstButton.clicked.connect(self.getLatConst)
self.latConstLabel.setFixedHeight(100)
hbox_nav = QtGui.QHBoxLayout()
hbox_nav.addWidget(prevButton)
hbox_nav.addWidget(nextButton)
vbox_opt = QtGui.QVBoxLayout()
vbox_opt.addWidget(clearButton)
vbox_opt.addWidget(startButton)
vbox_opt.addWidget(getLatConstButton)
vbox_panel = QtGui.QVBoxLayout()
vbox_panel.addLayout(hbox_nav)
vbox_panel.addLayout(vbox_opt)
vbox_panel.addWidget(self.latConstLabel)
hbox_disp_and_panel = QtGui.QHBoxLayout()
hbox_disp_and_panel.addWidget(self.display)
hbox_disp_and_panel.addLayout(vbox_panel)
vbox_main = QtGui.QVBoxLayout()
vbox_main.addLayout(hbox_disp_and_panel)
vbox_main.addWidget(self.plotWidget)
self.setLayout(vbox_main)
# self.statusBar().showMessage('Ready')
self.move(250, 5)
self.setWindowTitle('Lattice analyzer')
self.setWindowIcon(QtGui.QIcon('gui/world.png'))
self.show()
self.setFixedSize(self.width(), self.height()) # disable window resizing
def createPixmap(self):
paddedImage = imsup.PadImageBufferToNx512(self.image, np.max(self.image.buffer))
qImg = QtGui.QImage(imsup.ScaleImage(paddedImage.buffer, 0.0, 255.0).astype(np.uint8),
paddedImage.width, paddedImage.height, QtGui.QImage.Format_Indexed8)
# qImg = QtGui.QImage(imsup.ScaleImage(self.image.buffer, 0.0, 255.0).astype(np.uint8),
# self.image.width, self.image.height, QtGui.QImage.Format_Indexed8)
pixmap = QtGui.QPixmap(qImg)
pixmap = pixmap.scaledToWidth(const.ccWidgetDim) # !!!
self.display.setPixmap(pixmap)
def changePixmap(self, toNext=True):
newImage = self.image.next if toNext else self.image.prev
labToDel = self.display.children()
for child in labToDel:
child.deleteLater()
# child.hide()
if newImage is not None:
newImage.ReIm2AmPh()
self.image = newImage
self.createPixmap()
if len(self.pointSets) < self.image.numInSeries:
return
for pt, idx in zip(self.pointSets[self.image.numInSeries-1], range(1, len(self.pointSets[self.image.numInSeries-1])+1)):
print(self.image.numInSeries, pt)
lab = QtGui.QLabel('{0}'.format(idx), self.display)
lab.setStyleSheet('font-size:18pt; background-color:white; border:1px solid rgb(0, 0, 0);')
lab.move(pt[0], pt[1])
lab.show()
# def mousePressEvent(self, QMouseEvent):
# print(QMouseEvent.pos())
# przeniesc mouseReleaseEvent do LabelExt?
def mouseReleaseEvent(self, QMouseEvent):
pos = QMouseEvent.pos()
currPos = [pos.x(), pos.y()]
startPos = [ self.display.pos().x(), self.display.pos().y() ]
endPos = [ startPos[0] + self.display.width(), startPos[1] + self.display.height() ]
if startPos[0] < currPos[0] < endPos[0] and startPos[1] < currPos[1] < endPos[1]:
currPos = [ a - b for a, b in zip(currPos, startPos) ]
if len(self.pointSets) < self.image.numInSeries:
self.pointSets.append([])
self.pointSets[self.image.numInSeries-1].append(currPos)
lab = QtGui.QLabel('{0}'.format(len(self.pointSets[self.image.numInSeries-1])), self.display)
lab.setStyleSheet('font-size:18pt; background-color:white; border:1px solid rgb(0, 0, 0);')
lab.move(currPos[0], currPos[1])
lab.show()
def calcHistogramWithRotation(self):
# Find center point of the line
points = self.pointSets[self.image.numInSeries-1][:2]
points = np.array([ CalcRealCoords(const.dimSize, pt) for pt in points ])
rotCenter = np.average(points, 0).astype(np.int32)
print('rotCenter = {0}'.format(rotCenter))
# Find direction (angle) of the line
# take sign of angle into account!!!
dirAngles = FindDirectionAngle(points[0], points[1])
print([ imsup.Degrees(da) for da in dirAngles ])
# Shift image by -center
shiftToRotCenter = list(-rotCenter)
shiftToRotCenter.reverse()
imgShifted = cc.ShiftImage(self.image, shiftToRotCenter)
imgShifted = imsup.CreateImageWithBufferFromImage(imgShifted)
# Rotate image by angle
imgRot = tr.RotateImageSki2(imgShifted, imsup.Degrees(-dirAngles[0]))
# imgRot = imsup.RotateImage(imgShifted, imsup.Degrees(-dirAngles[0]))
imgRot.MoveToCPU() # imgRot should already be stored in CPU memory
# Crop fragment whose height = distance between two points
ptDiffs = points[0]-points[1]
fragHeight = int(np.sqrt(ptDiffs[0] ** 2 + ptDiffs[1] ** 2))
fragWidth = fragHeight
print('Frag height = {0}'.format(fragHeight))
fragCoords = imsup.DetermineCropCoordsForNewWidth(imgRot.width, fragWidth)
print('Frag coords = {0}'.format(fragCoords))
imgCropped = imsup.CreateImageWithBufferFromImage(imsup.CropImageROICoords(imgRot, fragCoords))
imgCropped.MoveToCPU()
imgList = imsup.ImageList([self.image, imgShifted, imgRot, imgCropped])
imgList.UpdateLinks()
# Calculate projection of intensity and FFT
distances = np.arange(0, fragWidth, 1, np.float32)
distances *= const.pxWidth
intMatrix = np.copy(imgCropped.amPh.am)
intProjection = np.sum(intMatrix, 0) # 0 - horizontal projection, 1 - vertical projection
intProjFFT = list(np.fft.fft(intProjection))
arrHalf = len(intProjFFT) // 2
intProjFFT = np.array(intProjFFT[arrHalf:] + intProjFFT[:arrHalf])
intProjFFTReal, intProjFFTImag = np.abs(np.real(intProjFFT)), np.imag(intProjFFT)
recPxWidth = 1.0 / (intProjection.shape[0] * const.pxWidth)
recOrigin = -1.0 / (2.0 * const.pxWidth)
recDistances = np.array([ recOrigin + x * recPxWidth for x in range(intProjection.shape[0]) ])
intProjFFTRealToPlot = imsup.ScaleImage(intProjFFTReal, 0, 10)
recDistsToPlot = recDistances * 1e-10 # A^-1
self.plotWidget.plot(recDistsToPlot, intProjFFTRealToPlot, 'rec. dist. [1/A]', 'FFT [a.u.]')
# Rysuj widmo FFT w GUI
# Użytkownik zaznacza odpowiednie maksimum
# Do piku dopasowywany jest Gauss
# Wyznaczana jest odpowiednia stała sieci
# file1 = open('int_proj.txt', 'w')
# for dist, intProj in zip(distances, intProjection):
# file1.write('{0:.2f}\t{1:.2f}\n'.format(dist * 1e10, intProj))
# file1.close()
#
# file2 = open('int_proj_fft.txt', 'w')
# for dist, intProj in zip(recDistances, intProjFFTReal):
# file2.write('{0:.2f}\t{1:.2f}\n'.format(dist * 1e-10, intProj))
# file2.close()
def getLatConst(self):
recDist = self.plotWidget.markedPointData[0]
latConst = np.abs(1.0 / recDist)
self.latConstLabel.label.setText('{0:.2f} A'.format(latConst))
def clearImage(self):
labToDel = self.display.children()
for child in labToDel:
child.deleteLater()
self.pointSets[self.image.numInSeries - 1][:] = []
# def exportImage(self):
# fName = 'img{0}.png'.format(self.image.numInSeries)
# imsup.SaveAmpImage(self.image, fName)
# print('Saved image as "{0}"'.format(fName))
# --------------------------------------------------------
def LoadImageSeriesFromFirstFile(imgPath):
imgList = imsup.ImageList()
imgNumMatch = re.search('([0-9]+).dm3', imgPath)
imgNumText = imgNumMatch.group(1)
imgNum = int(imgNumText)
while path.isfile(imgPath):
print('Reading file "' + imgPath + '"')
imgData = dm3.ReadDm3File(imgPath)
imgMatrix = imsup.PrepareImageMatrix(imgData, const.dimSize)
img = imsup.ImageWithBuffer(const.dimSize, const.dimSize, imsup.Image.cmp['CAP'], imsup.Image.mem['CPU'])
img.LoadAmpData(np.sqrt(imgMatrix).astype(np.float32))
# ---
# imsup.RemovePixelArtifacts(img, const.minPxThreshold, const.maxPxThreshold)
img.UpdateBuffer()
# ---
img.numInSeries = imgNum
imgList.append(img)
imgNum += 1
imgNumTextNew = imgNumText.replace(str(imgNum-1), str(imgNum))
if imgNum == 10:
imgNumTextNew = imgNumTextNew[1:]
imgPath = RReplace(imgPath, imgNumText, imgNumTextNew, 1)
imgNumText = imgNumTextNew
imgList.UpdateLinks()
return imgList[0]
# --------------------------------------------------------
def CalcTopLeftCoords(imgWidth, midCoords):
topLeftCoords = [ mc + imgWidth // 2 for mc in midCoords ]
return topLeftCoords
# --------------------------------------------------------
def CalcTopLeftCoordsForSetOfPoints(imgWidth, points):
topLeftPoints = [ CalcTopLeftCoords(imgWidth, pt) for pt in points ]
return topLeftPoints
# --------------------------------------------------------
def CalcRealCoords(imgWidth, dispCoords):
dispWidth = const.ccWidgetDim
factor = imgWidth / dispWidth
realCoords = [ int((dc - dispWidth // 2) * factor) for dc in dispCoords ]
return realCoords
# --------------------------------------------------------
def CalcRealCoordsForSetOfPoints(imgWidth, points):
realPoints = [ CalcRealCoords(imgWidth, pt) for pt in points ]
return realPoints
# --------------------------------------------------------
def CalcRealTLCoordsForPaddedImage(imgWidth, dispCoords):
dispWidth = const.ccWidgetDim
padImgWidthReal = np.ceil(imgWidth / 512.0) * 512.0
pad = (padImgWidthReal - imgWidth) / 2.0
factor = padImgWidthReal / dispWidth
# dispPad = pad / factor
# realCoords = [ (dc - dispPad) * factor for dc in dispCoords ]
realCoords = [ int(dc * factor - pad) for dc in dispCoords ]
return realCoords
# --------------------------------------------------------
def CalcDispCoords(dispWidth, realCoords):
imgWidth = const.dimSize
factor = dispWidth / imgWidth
dispCoords = [ (rc * factor) + const.ccWidgetDim // 2 for rc in realCoords ]
return dispCoords
# --------------------------------------------------------
def CalcDistance(p1, p2):
dist = np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
return dist
# --------------------------------------------------------
def CalcInnerAngle(a, b, c):
alpha = np.arccos(np.abs((a*a + b*b - c*c) / (2*a*b)))
return imsup.Degrees(alpha)
# --------------------------------------------------------
def CalcOuterAngle(p1, p2):
dist = CalcDistance(p1, p2)
betha = np.arcsin(np.abs(p1[0] - p2[0]) / dist)
return imsup.Degrees(betha)
# --------------------------------------------------------
def CalcNewCoords(p1, newCenter):
p2 = [ px - cx for px, cx in zip(p1, newCenter) ]
return p2
# --------------------------------------------------------
def FindDirectionAngle(p1, p2):
ang1 = np.arctan2(np.abs(p1[0]-p2[0]), np.abs(p1[1]-p2[1]))
ang2 = np.pi / 2 - ang1
return ang1, ang2
# --------------------------------------------------------
# tu jeszcze cos nie tak (03-04-2017)
def CalcRotAngle(p1, p2):
z1 = np.complex(p1[0], p1[1])
z2 = np.complex(p2[0], p2[1])
phi1 = np.angle(z1)
phi2 = np.angle(z2)
rotAngle = np.abs(imsup.Degrees(phi2 - phi1))
# if rotAngle < 0:
# rotAngle = 360 - np.abs(rotAngle)
return rotAngle
# --------------------------------------------------------
def SwitchXY(xy):
return [xy[1], xy[0]]
# --------------------------------------------------------
def RReplace(text, old, new, occurence):
rest = text.rsplit(old, occurence)
return new.join(rest)
# --------------------------------------------------------
def RunLatticeAnalyzer():
app = QtGui.QApplication(sys.argv)
laWindow = LatticeAnalyzerWidget()
sys.exit(app.exec_())