-
Notifications
You must be signed in to change notification settings - Fork 0
/
9_ema_regression.py
189 lines (141 loc) · 5.48 KB
/
9_ema_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
tf.logging.set_verbosity(tf.logging.INFO)
def generate_dataset():
x_batch = np.linspace(0, 2, 100)
y_batch = 1.5 * x_batch + np.random.randn(*x_batch.shape) * 0.2 + 0.5
return x_batch, y_batch
def simple_network(x, w):
with tf.variable_scope('lreg', reuse=tf.AUTO_REUSE):
b = tf.get_variable('b', shape=[], dtype=tf.float32, initializer=tf.random_normal_initializer())
y_pred = tf.add(tf.multiply(w, x), b)
return y_pred
def run():
# prepare data
x_batch, y_batch = generate_dataset()
# prepare placeholders
x = tf.placeholder(tf.float32, shape=(None,), name='x')
y = tf.placeholder(tf.float32, shape=(None,), name='y')
# construct network
# w = tf.get_variable('w', shape=[], dtype=tf.float32, initializer=tf.initializers.ones())
w = tf.get_variable('w', shape=[], dtype=tf.float32, initializer=tf.random_normal_initializer())
y_pred = simple_network(x, w)
# prepare exponential moving average
ema = tf.train.ExponentialMovingAverage(decay=0.998)
ema_op = ema.apply([w])
ema_w = ema.average(w)
# eval network
y_pred_eval = simple_network(x, ema_w)
# compute loss
loss = tf.reduce_mean(tf.square(y_pred - y))
# prepare optimizer op
optimizer = tf.train.GradientDescentOptimizer(0.1)
with tf.control_dependencies([ema_op]):
train_op = optimizer.minimize(loss)
with tf.Session() as session:
session.run(tf.global_variables_initializer())
feed_dict = {x: x_batch, y: y_batch}
for i in range(300):
_, loss_val = session.run([train_op, loss], feed_dict)
w_o, w_a = session.run([w, ema_w], feed_dict)
print('{}: loss {}, w {}, w_av: {}'.format(i, loss_val, w_o, w_a))
print('Predicting')
y_pred_batch = session.run(y_pred, {x: x_batch})
y_pred_batch_eval = session.run(y_pred_eval, {x: x_batch})
plt.scatter(x_batch, y_batch)
plt.plot(x_batch, y_pred_batch, color='red')
plt.xlim(0, 2)
plt.ylim(0, 2)
plt.savefig('plot.png')
plt.close()
plt.scatter(x_batch, y_batch)
plt.plot(x_batch, y_pred_batch_eval, color='red')
plt.xlim(0, 2)
plt.ylim(0, 2)
plt.savefig('plot-eval.png')
plt.close()
def input_fn(x_batch, y_batch, epoch, batch_size):
dataset = tf.data.Dataset.from_tensor_slices((x_batch, y_batch))
dataset = dataset.shuffle(buffer_size=20000).repeat(epoch)
dataset = dataset.prefetch(batch_size)
dataset = dataset.batch(batch_size)
dataset = dataset.map(
map_func=lambda x, y: (
{
'x': tf.cast(x, dtype=tf.float32),
}, tf.cast(y, dtype=tf.float32)),
num_parallel_calls=8
)
return dataset
def model_fn(features, labels, mode, params):
# ================================
# common operations for all modes
# ================================
x = features['x']
y = labels
is_training = mode == tf.estimator.ModeKeys.TRAIN
# construct network
# w = tf.get_variable('w', shape=[], dtype=tf.float32, initializer=tf.initializers.ones())
w = tf.get_variable('w', shape=[], dtype=tf.float32, initializer=tf.random_normal_initializer())
y_pred = simple_network(x, w)
# apply exponential moving average
ema = tf.train.ExponentialMovingAverage(decay=0.998)
ema_op = ema.apply([w])
w_average = ema.average(w)
# eval network
y_pred_eval = simple_network(x, w_average)
# ================================
# prediction mode
# ================================
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions={})
# compute loss
if is_training:
loss = tf.reduce_mean(tf.square(y_pred - y))
else:
loss = tf.reduce_mean(tf.square(y_pred_eval - y))
tf.summary.scalar('w_ori', w)
tf.summary.scalar('w_avg', w_average)
# ================================
# evaluation mode
# ================================
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, eval_metric_ops={})
# ================================
# training mode
# ================================
assert mode == tf.estimator.ModeKeys.TRAIN
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
with tf.control_dependencies([ema_op]):
train_ops = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_ops)
def train_estimator(model_dir):
# prepare data
x_batch, y_batch = generate_dataset()
epoch = 300
batch_size = 1
# create run config for estimator
run_config = tf.estimator.RunConfig(keep_checkpoint_max=1)
# create the Estimator
mnist_classifier = tf.estimator.Estimator(
model_fn=model_fn,
model_dir=model_dir,
config=run_config,
params={},
warm_start_from=None
)
# train model
mnist_classifier.train(input_fn=lambda: input_fn(x_batch, y_batch, epoch, batch_size))
# evaluate the model and print results
# hooks not working for evaluation?
eval_results = mnist_classifier.evaluate(input_fn=lambda: input_fn(x_batch, y_batch, 1, batch_size))
print(eval_results)
return
def main():
# run()
model_dir = './models/ema_regression'
train_estimator(model_dir)
return
if __name__ == "__main__":
main()