Skip to content

moono/tf-cnn-mnist

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

67 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tensorflow: CNN on MINST with examples

  • Tensorflow coding reference document

Tested environments

  • Tensorflow version: 1.8

Prerequisite

  • Must make MNIST tfrecords with 2_create_mnist_tfrecords.py for some examples

Examples

Dataset API example

  • 0_dataset_api_simple.py
    • example of from_tensor_slices(), which iterate through raw files
    • run several times to get to know about shuffling the data
    • seems like we should shuffle on file names with shuffle_buffer size greater_or_equal to length of files
  • 1_dataset_api.py
    • example of *.tfrecords files
    • take a look at 'case-*.txt' files with test_tfrecords()
    • note: there is file name shuffling as well as dataset element shuffling which may confusing at first
  • 2_create_mnist_tfrecords.py
    • download mnist train & test data and converts to *.tfrecord files

Low level API example

  • 3_low_level_api.py
    • use tf.get_variable(), tf.nn.*
    • tf.Session() and tf.placeholder()

high level API example

  • 4_1_high_level_api.py
    • tf.estimator and tf.layers.*
    • prepare trained model for tensorflow serving
  • 4_2_export_trained_estimator.py
    • Prerequisite: 4_1_high_level_api.py
    • prepare existing estimator's model_fn() for serving to use in another estimator
  • 4_3_estimator_within_estimator.py
    • Prerequisite: 4_1_high_level_api.py, 4_2_export_trained_estimator.py
    • use trained custum estimator inside another estimator

eager execution mode example

  • 5_eager_execution.py
    • saving eager model with tfe.Saver
    • load model and evaluate
    • includes use case of converting eager trained model to servable model

multi-gpu example

  • 6_multi_gpu.py and 6_multi_gpu_run.sh
    • muti-tower fashion(using same network on each GPU - data parallelism)

References

Releases

No releases published

Packages

No packages published