-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup.py
234 lines (166 loc) · 6.59 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import os, re, json, yaml, argparse
from datasets import load_dataset
from tokenizers.models import BPE
from tokenizers import Tokenizer, normalizers
from tokenizers.trainers import BpeTrainer
from tokenizers.pre_tokenizers import Whitespace
from tokenizers.normalizers import NFD, Lowercase, StripAccents
#NMT
def process_translation_data(data_volumn):
#load original dataset
nmt_data = load_dataset('wmt14', 'de-en', split='train')['translation']
min_len = 10
max_len = 300
max_diff = 50
volumn_cnt = 0
corpus, processed = [], []
for elem in nmt_data:
temp_dict = dict()
x, y = elem['en'].strip().lower(), elem['de'].strip().lower()
x_len, y_len = len(x), len(y)
#Filtering Conditions
min_condition = (x_len >= min_len) & (y_len >= min_len)
max_condition = (x_len <= max_len) & (y_len <= max_len)
dif_condition = abs(x_len - y_len) < max_diff
if max_condition & min_condition & dif_condition:
corpus.append(x)
corpus.append(y)
processed.append({'x': x, 'y':y})
#End condition
volumn_cnt += 1
if volumn_cnt == data_volumn:
break
#Save Corpus
with open('data/translation/corpus.txt', 'w') as f:
f.write('\n'.join(corpus))
return processed
#Dialog
def process_dialogue_data(data_volumn):
volumn_cnt = 0
corpus, processed = [], []
#Load original Datasets
daily_data = load_dataset('daily_dialog')
#Daily-Dialogue Dataset Processing
x_data, y_data = [], []
for split in ['train', 'validation', 'test']:
for dial in daily_data[split]['dialog']:
dial_list = []
dial_turns = len(dial)
if max([len(d) for d in dial]) > 300:
continue
for uttr in dial:
_uttr = re.sub(r"\s([?,.!’](?:\s|$))", r'\1', uttr)
_uttr = re.sub(r'([’])\s+', r'\1', _uttr).strip().lower()
if len(_uttr) > 300:
break
dial_list.append(_uttr)
if dial_turns < 2:
continue
elif dial_turns == 2:
x_data.append(dial_list[0])
y_data.append(dial_list[1])
continue #To avoid duplicate on below condition
#Incase of dial_turns is even
elif dial_turns % 2 == 0:
x_data.extend(dial_list[0::2])
y_data.extend(dial_list[1::2])
x_data.extend(dial_list[1:-1:2])
y_data.extend(dial_list[2::2])
#Incase of dial_turns is odds
elif dial_turns % 2 == 1:
x_data.extend(dial_list[0:-1:2])
y_data.extend(dial_list[1::2])
x_data.extend(dial_list[1::2])
y_data.extend(dial_list[2::2])
assert len(x_data) == len(y_data)
for x, y in zip(x_data, y_data):
corpus.append(x)
corpus.append(y)
processed.append({'x': x, 'y': y})
volumn_cnt += 1
if volumn_cnt == data_volumn:
break
#Save Corpus
with open('data/dialogue/corpus.txt', 'w') as f:
f.write('\n'.join(corpus))
return processed
#Summarization
def process_summarization_data(data_volumn):
volumn_cnt = 0
corpus, processed = [], []
min_len, max_len = 500, 2300
#Load Original Dataset
cnn_data = load_dataset('cnn_dailymail', '3.0.0')
for split in ['train', 'validation', 'test']:
for elem in cnn_data[split]:
x, y = elem['article'], elem['highlights']
if min_len < len(x) < max_len:
if len(y) < min_len:
#Lowercase
x, y = x.lower(), y.lower()
#Remove unnecessary characters in trg sequence
y = re.sub(r'\n', ' ', y) #remove \n
y = re.sub(r"\s([.](?:\s|$))", r'\1', y) #remove whitespace in front of dot
processed.append({'x': x, 'y': y})
corpus.append(x)
corpus.append(y)
#End Condition
volumn_cnt += 1
if volumn_cnt == data_volumn:
break
with open('data/summarization/corpus.txt', 'w') as f:
f.write('\n'.join(corpus))
return processed
def train_tokenizer(task):
corpus_path = f'data/{task}/corpus.txt'
assert os.path.exists(corpus_path)
assert os.path.exists('config.yaml')
with open('config.yaml', 'r') as f:
tok_config = yaml.load(f, Loader=yaml.FullLoader)['tokenizer']
tokenizer = Tokenizer(BPE(unk_token=tok_config['unk_token']))
tokenizer.normalizer = normalizers.Sequence([NFD(), Lowercase(), StripAccents()])
tokenizer.pre_tokenizer = Whitespace()
trainer = BpeTrainer(
vocab_size=tok_config['vocab_size'],
special_tokens=[
tok_config['pad_token'],
tok_config['unk_token'],
tok_config['bos_token'],
tok_config['eos_token']
]
)
tokenizer.train(files=[corpus_path], trainer=trainer)
tokenizer.save(f"data/{task}/tokenizer.json")
def save_data(task, data_obj):
#split data into train/valid/test sets
train, valid, test = data_obj[:-5100], data_obj[-5100:-100], data_obj[-100:]
data_dict = {k:v for k, v in zip(['train', 'valid', 'test'], [train, valid, test])}
for key, val in data_dict.items():
with open(f'data/{task}/{key}.json', 'w') as f:
json.dump(val, f)
assert os.path.exists(f'data/{task}/{key}.json')
def main(task):
#Prerequisite
os.makedirs(f'data/{task}', exist_ok=True)
#PreProcess Data
data_volumn = 55100
if task == 'translation':
processed = process_translation_data(data_volumn)
elif task == 'dialogue':
processed = process_dialogue_data(data_volumn)
elif task == 'summarization':
processed = process_summarization_data(data_volumn)
#Train Tokenizer
train_tokenizer(task)
#Save Data
save_data(task, processed)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-task', required=True)
args = parser.parse_args()
assert args.task in ['all', 'translation', 'dialogue', 'summarization']
if args.task == 'all':
for task in ['translation', 'dialogue', 'summarization']:
main(task)
else:
main(args.task)