-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoptimizer.py
417 lines (366 loc) · 17.1 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import os
import tdc
import time
import yaml
import wandb
import numpy as np
from tdc import Oracle
from rdkit import Chem
from rdkit.Chem import Draw
def top_auc(buffer, top_n, finish, env_log_interval, max_oracle_calls):
sum = 0
prev = 0
called = 0
ordered_results = list(sorted(buffer.items(), key=lambda kv: kv[1][1], reverse=False))
for idx in range(env_log_interval, min(len(buffer), max_oracle_calls), env_log_interval):
temp_result = ordered_results[:idx]
temp_result = list(sorted(temp_result, key=lambda kv: kv[1][0], reverse=True))[:top_n]
top_n_now = np.mean([item[1][0] for item in temp_result])
sum += env_log_interval * (top_n_now + prev) / 2
prev = top_n_now
called = idx
temp_result = list(sorted(ordered_results, key=lambda kv: kv[1][0], reverse=True))[:top_n]
top_n_now = np.mean([item[1][0] for item in temp_result])
sum += (len(buffer) - called) * (top_n_now + prev) / 2
if finish and len(buffer) < max_oracle_calls:
sum += (max_oracle_calls - len(buffer)) * top_n_now
return sum / max_oracle_calls
class BaseOptimizer:
def __init__(self, cfg=None):
self.cfg = cfg
self.model_name = cfg.model_name
self.target_name = cfg.target
# defining target oracles
self.assign_target(cfg)
print('Target is assigned')
# defining standard oracles
self.sa_scorer = tdc.Oracle(name = 'SA')
self.diversity_evaluator = tdc.Evaluator(name = 'Diversity')
self.filter = tdc.chem_utils.oracle.filter.MolFilter(filters = ['PAINS', 'SureChEMBL', 'Glaxo'], property_filters_flag = False)
self.max_oracle_calls = cfg.max_oracle_calls
self.env_log_interval = cfg.env_log_interval
# store all unique molecules
self.mol_buffer = dict()
self.mean_score = 0
#logging counters
self.last_log = 0
self.last_log_time = time.time()
self.total_count = 0
self.invalid_count = 0
self.redundant_count = 0
print('Initialisation of base optimizer is done!')
@property
def budget(self):
return self.max_oracle_calls
@property
def finish(self):
return len(self.mol_buffer) >= self.max_oracle_calls
def assign_target(self, cfg):
if cfg.task == 'docking':
from docking import DockingVina
docking_config = dict()
if self.target_name == 'fa7':
box_center = (10.131, 41.879, 32.097)
box_size = (20.673, 20.198, 21.362)
elif self.target_name == 'parp1':
box_center = (26.413, 11.282, 27.238)
box_size = (18.521, 17.479, 19.995)
elif self.target_name == '5ht1b':
box_center = (-26.602, 5.277, 17.898)
box_size = (22.5, 22.5, 22.5)
elif self.target_name == 'jak2':
box_center = (114.758,65.496,11.345)
box_size= (19.033,17.929,20.283)
elif self.target_name == 'braf':
box_center = (84.194,6.949,-7.081)
box_size = (22.032,19.211,14.106)
else:
raise NotImplementedError
docking_config['receptor_file'] = 'ReLeaSE_Vina/docking/' + self.target_name + '/receptor.pdbqt'
box_parameter = (box_center, box_size)
docking_config['box_parameter'] = box_parameter
docking_config['vina_program'] = cfg.vina_program
docking_config['temp_dir'] = cfg.temp_dir
docking_config['exhaustiveness'] = cfg.exhaustiveness
docking_config['num_sub_proc'] = cfg.num_sub_proc
docking_config['num_cpu_dock'] = cfg.num_cpu_dock
docking_config['num_modes'] = cfg.num_modes
docking_config['timeout_gen3d'] = cfg.timeout_gen3d
docking_config['timeout_dock'] = cfg.timeout_dock
self.target = DockingVina(docking_config)
self.predict = self.predict_docking
elif cfg.task == 'augmented_docking':
from docking import DockingVina
docking_config = dict()
if self.target_name == 'fa7':
box_center = (10.131, 41.879, 32.097)
box_size = (20.673, 20.198, 21.362)
elif self.target_name == 'parp1':
box_center = (26.413, 11.282, 27.238)
box_size = (18.521, 17.479, 19.995)
elif self.target_name == '5ht1b':
box_center = (-26.602, 5.277, 17.898)
box_size = (22.5, 22.5, 22.5)
elif self.target_name == 'jak2':
box_center = (114.758,65.496,11.345)
box_size= (19.033,17.929,20.283)
elif self.target_name == 'braf':
box_center = (84.194,6.949,-7.081)
box_size = (22.032,19.211,14.106)
else:
raise NotImplementedError
docking_config['receptor_file'] = 'ReLeaSE_Vina/docking/' + self.target_name + '/receptor.pdbqt'
box_parameter = (box_center, box_size)
docking_config['box_parameter'] = box_parameter
docking_config['vina_program'] = cfg.vina_program
docking_config['temp_dir'] = cfg.temp_dir
docking_config['exhaustiveness'] = cfg.exhaustiveness
docking_config['num_sub_proc'] = cfg.num_sub_proc
docking_config['num_cpu_dock'] = cfg.num_cpu_dock
docking_config['num_modes'] = cfg.num_modes
docking_config['timeout_gen3d'] = cfg.timeout_gen3d
docking_config['timeout_dock'] = cfg.timeout_dock
self.target = DockingVina(docking_config)
self.qed_scorer = Oracle(name = 'qed')
self.predict = self.predict_augmented_docking
elif cfg.task == 'pmo':
self.target = Oracle(name = self.target_name)
self.predict = self.predict_pmo
else:
raise NotImplementedError
def define_wandb_metrics(self):
#new wandb metric
wandb.define_metric("num_molecules")
wandb.define_metric("avg_top1", step_metric="num_molecules")
wandb.define_metric("avg_top10", step_metric="num_molecules")
wandb.define_metric("avg_top100", step_metric="num_molecules")
wandb.define_metric("auc_top1", step_metric="num_molecules")
wandb.define_metric("auc_top10", step_metric="num_molecules")
wandb.define_metric("auc_top100", step_metric="num_molecules")
wandb.define_metric("avg_sa", step_metric="num_molecules")
wandb.define_metric("diversity_top100", step_metric="num_molecules")
wandb.define_metric("n_oracle", step_metric="num_molecules")
wandb.define_metric("invalid_count", step_metric="num_molecules")
wandb.define_metric("redundant_count", step_metric="num_molecules")
def score_pmo(self, smi):
"""
Function to score one molecule
Argguments:
smi: One SMILES string represnets a moelcule.
Return:
score: a float represents the property of the molecule.
"""
if len(self.mol_buffer) > self.max_oracle_calls:
return 0
if smi is None:
return 0
mol = Chem.MolFromSmiles(smi)
if mol is None or len(smi) == 0:
self.invalid_count += 1
return 0.0
else:
smi = Chem.MolToSmiles(mol)
if smi in self.mol_buffer:
self.mol_buffer[smi][2] += 1
self.redundant_count += 1
else:
self.mol_buffer[smi] = [float(self.target(smi)), len(self.mol_buffer)+1, 1]
return self.mol_buffer[smi][0]
def predict_pmo(self, smiles_list):
st = time.time()
assert type(smiles_list) == list
self.total_count += len(smiles_list)
score_list = []
for smi in smiles_list:
score_list.append(self.score_pmo(smi))
if len(self.mol_buffer) % self.env_log_interval == 0 and len(self.mol_buffer) > self.last_log:
self.sort_buffer()
self.log_intermediate()
self.last_log_time = time.time()
self.last_log = len(self.mol_buffer)
self.last_logging_time = time.time() - st
self.mean_score = np.mean(score_list)
return score_list
def predict_augmented_docking(self, smiles_list):
"""
Score
"""
st = time.time()
assert type(smiles_list) == list
self.total_count += len(smiles_list)
score_list = [None] * len(smiles_list)
new_smiles = []
new_smiles_ptrs = []
for i, smi in enumerate(smiles_list):
if smi in self.mol_buffer:
score_list[i] = self.mol_buffer[smi][0]
self.mol_buffer[smi][2] += 1
self.redundant_count += 1
else:
new_smiles.append((smi))
new_smiles_ptrs.append((i))
new_smiles_scores = self.target(new_smiles)
for smi, ptr, sc in zip(new_smiles, new_smiles_ptrs, new_smiles_scores):
if sc == 99.0:
self.invalid_count += 1
sc = 0
self.mol_buffer[smi] = [( -sc / 20 ) * ( (10 - self.sa_scorer(smi)) / 9 ) * self.qed_scorer(smi), len(self.mol_buffer)+1, 1, -sc]
score_list[ptr] = self.mol_buffer[smi][0]
if len(self.mol_buffer) % self.env_log_interval == 0 and len(self.mol_buffer) > self.last_log:
self.sort_buffer()
self.log_intermediate()
self.last_log_time = time.time()
self.last_log = len(self.mol_buffer)
self.last_logging_time = time.time() - st
self.mean_score = np.mean(score_list)
return score_list
def predict_docking(self, smiles_list):
"""
Score
"""
st = time.time()
assert type(smiles_list) == list
self.total_count += len(smiles_list)
score_list = [None] * len(smiles_list)
new_smiles = []
new_smiles_ptrs = []
for i, smi in enumerate(smiles_list):
if smi in self.mol_buffer:
score_list[i] = self.mol_buffer[smi][0] / 20
self.mol_buffer[smi][2] += 1
self.redundant_count += 1
else:
new_smiles.append((smi))
new_smiles_ptrs.append((i))
new_smiles_scores = self.target(new_smiles)
for smi, ptr, sc in zip(new_smiles, new_smiles_ptrs, new_smiles_scores):
if sc == 99.0:
self.invalid_count += 1
sc = 0
self.mol_buffer[smi] = [-sc, len(self.mol_buffer)+1, 1]
score_list[ptr] = -sc / 20
if len(self.mol_buffer) % self.env_log_interval == 0 and len(self.mol_buffer) > self.last_log:
self.sort_buffer()
self.log_intermediate()
self.last_log_time = time.time()
self.last_log = len(self.mol_buffer)
self.last_logging_time = time.time() - st
self.mean_score = np.mean(score_list)
return score_list
def optimize(self, cfg):
raise NotImplementedError
def sanitize(self, mol_list):
new_mol_list = []
smiles_set = set()
for mol in mol_list:
if mol is not None:
try:
smiles = Chem.MolToSmiles(mol)
if smiles is not None and smiles not in smiles_set:
smiles_set.add(smiles)
new_mol_list.append(mol)
except ValueError:
print('bad smiles')
return new_mol_list
def sort_buffer(self):
self.mol_buffer = dict(sorted(self.mol_buffer.items(), key=lambda kv: kv[1][0], reverse=True))
def log_intermediate(self, mols=None, scores=None, finish=False):
if finish:
temp_top100 = list(self.mol_buffer.items())[:100]
smis = [item[0] for item in temp_top100]
scores = [item[1][0] for item in temp_top100]
if self.cfg.task == 'augmented_docking':
docking_scores = [item[1][3] for item in temp_top100]
n_calls = self.max_oracle_calls
else:
if mols is None and scores is None:
if len(self.mol_buffer) <= self.max_oracle_calls:
# If not spefcified, log current top-100 mols in buffer
temp_top100 = list(self.mol_buffer.items())[:100]
smis = [item[0] for item in temp_top100]
scores = [item[1][0] for item in temp_top100]
if self.cfg.task == 'augmented_docking':
docking_scores = [item[1][3] for item in temp_top100]
else:
docking_scores = [0] * len(scores)
n_calls = len(self.mol_buffer)
else:
results = list(sorted(self.mol_buffer.items(), key=lambda kv: kv[1][1], reverse=False))[:self.max_oracle_calls]
temp_top100 = sorted(results, key=lambda kv: kv[1][0], reverse=True)[:100]
smis = [item[0] for item in temp_top100]
scores = [item[1][0] for item in temp_top100]
if self.cfg.task == 'augmented_docking':
docking_scores = [item[1][3] for item in temp_top100]
else:
docking_scores = [0] * len(scores)
n_calls = self.max_oracle_calls
else:
# Otherwise, log the input moleucles
smis = [Chem.MolToSmiles(m) for m in mols]
n_calls = len(self.mol_buffer)
avg_top1 = np.max(scores)
avg_top10 = np.mean(sorted(scores, reverse=True)[:10])
avg_top100 = np.mean(scores)
avg_docking_top1 = np.max(docking_scores)
avg_docking_top10 = np.mean(sorted(docking_scores, reverse=True)[:10])
avg_docking_top100 = np.mean(docking_scores)
avg_sa = np.mean(self.sa_scorer(smis))
diversity_top100 = self.diversity_evaluator(smis)
print(f'{n_calls}/{self.max_oracle_calls} | '
f'avg_top1: {avg_top1:.3f} | '
# f'avg_top10: {avg_top10:.3f} | '
# f'avg_top100: {avg_top100:.3f} | '
f'time: {time.time() - self.last_log_time:.3f} | '
f'logging time : {self.last_logging_time} | '
f'mean_score: {self.mean_score:.3f} | '
f'tot_cnt: {self.total_count} | '
f'inv_count: {self.invalid_count} | '
f'red_cnt: {self.redundant_count} | '
)
if self.cfg.wandb_log:
wandb.log({
"avg_top1": avg_top1,
"avg_top10": avg_top10,
"avg_top100": avg_top100,
"avg_docking_top1": avg_docking_top1,
"avg_docking_top10": avg_docking_top10,
"avg_docking_top100": avg_docking_top100,
"auc_top1": top_auc(self.mol_buffer, 1, finish, self.env_log_interval, self.max_oracle_calls),
"auc_top10": top_auc(self.mol_buffer, 10, finish, self.env_log_interval, self.max_oracle_calls),
"auc_top100": top_auc(self.mol_buffer, 100, finish, self.env_log_interval, self.max_oracle_calls),
# "avg_sa": avg_sa,
"diversity_top100": diversity_top100,
"invalid_count" : self.invalid_count,
"redundant_count": self.redundant_count,
"num_molecules": n_calls,
})
# data = [[scores[i], docking_scores[i], smis[i], wandb.Image(Draw.MolToImage(Chem.MolFromSmiles(smis[i])))] for i in range(10)]
# columns = ["Score", "Docking score", "SMILES", "IMAGE"]
# wandb.log({"Top 10 Molecules": wandb.Table(data=data, columns=columns)})
def _analyze_results(self, results):
results = results[:100]
scores_dict = {item[0]: item[1][0] for item in results}
smis = [item[0] for item in results]
scores = [item[1][0] for item in results]
smis_pass = self.filter(smis)
if len(smis_pass) == 0:
top1_pass = -1
else:
top1_pass = np.max([scores_dict[s] for s in smis_pass])
return [np.mean(scores),
np.mean(scores[:10]),
np.max(scores),
self.diversity_evaluator(smis),
np.mean(self.sa_scorer(smis)),
float(len(smis_pass) / 100),
top1_pass]
def save_result(self, suffix=None):
if suffix is None:
output_file_path = os.path.join(self.cfg.output_dir, 'results.yaml')
else:
output_file_path = os.path.join(self.cfg.output_dir, 'results_' + suffix + '.yaml')
self.sort_buffer()
with open(output_file_path, 'w') as f:
yaml.dump(self.mol_buffer, f, sort_keys=False)
def __len__(self):
return len(self.mol_buffer)