-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.Rmd
92 lines (64 loc) · 1.81 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# evalGSVAsig
<!-- badges: start -->
<!-- badges: end -->
The goal of evalGSVAsig is to identify which genes are contributing most to a GSVA score.
## Installation
You can install the development version of evalGSVAsig from [GitHub](https://github.com/) with:
``` r
# install.packages("devtools")
devtools::install_github("lkroeh/evalGSVAsig")
```
## Example
This is a basic example which shows the format of the data:
```{r example, eval = FALSE, message=FALSE, warnings=FALSE }
library(evalGSVAsig)
#example gene list
sig <- c("GENE1", "GENE2", "GENE3")
signature_list <- c(list(sig))
names(signature_list) <- c("signature1")
#run function
output <- evalGSVAsig::GSVAsignatureRanking(eset, signature_list)
#view output
#print df of genes ordered by correlation to GSVA scores
output[[1]]
#show heatmap of ALL gene expression in relation to GSVA score
output[[2]]
#show heatmap of SIGNATURE gene expression in relation to GSVA score
output[[3]]
#get expression with GSVA scores saved in pData
output[[4]]
```
With sample data:
```{r plots, message=FALSE, warning=FALSE, results='hide' }
#with our sample data
data(signatures)
data(eset)
output <- evalGSVAsig::GSVAsignatureRanking(eset = eset, signature = signatures, metacol = 'hpv_status')
```
View tables:
```{r tables}
#This table contains all genes
head(output[[1]])
#This table contains only signature genes
head(output[[2]])
```
View heatmap that plots all signature and non-signature genes:
```{r heatmaps, dpi=300}
output[[3]]
```
View heatmap that plots only signature genes:
```{r heatmap2, dpi=300}
output[[4]]
```