Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Splink4: Now DBAPI is merged, remove dialect specific docstrings #1899

Merged
merged 2 commits into from
Jan 29, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
318 changes: 85 additions & 233 deletions splink/linker.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,48 +151,26 @@ def __init__(
holds the data linkage model.

Examples:
=== ":simple-duckdb: DuckDB"
Dedupe
```py
df = pd.read_csv("data_to_dedupe.csv")
linker = DuckDBLinker(df, settings_dict)
```
Link
```py
df_1 = pd.read_parquet("table_1/")
df_2 = pd.read_parquet("table_2/")
linker = DuckDBLinker(
[df_1, df_2],
settings_dict,
input_table_aliases=["customers", "contact_center_callers"]
)
```
Dedupe with a pre-trained model read from a json file
```py
df = pd.read_csv("data_to_dedupe.csv")
linker = DuckDBLinker(df, "model.json")
```
=== ":simple-apachespark: Spark"
Dedupe
```py
df = spark.read.csv("data_to_dedupe.csv")
linker = SparkLinker(df, settings_dict)
```
Link
```py
df_1 = spark.read.parquet("table_1/")
df_2 = spark.read.parquet("table_2/")
linker = SparkLinker(
[df_1, df_2],
settings_dict,
input_table_aliases=["customers", "contact_center_callers"]
)
```
Dedupe with a pre-trained model read from a json file
```py
df = spark.read.csv("data_to_dedupe.csv")
linker = SparkLinker(df, "model.json")
```

Dedupe
```py
linker = Linker(df, settings_dict, db_api)
```
Link
```py
df_1 = pd.read_parquet("table_1/")
df_2 = pd.read_parquet("table_2/")
linker = Linker(
[df_1, df_2],
settings_dict,
input_table_aliases=["customers", "contact_center_callers"]
)
```
Dedupe with a pre-trained model read from a json file
```py
df = pd.read_csv("data_to_dedupe.csv")
linker = Linker(df, "model.json")
```

Args:
input_table_or_tables (Union[str, list]): Input data into the linkage model.
Expand Down Expand Up @@ -768,29 +746,10 @@ def query_sql(self, sql, output_type="pandas"):
the resulting output.

Examples:
=== ":simple-duckdb: DuckDB"
```py
linker = DuckDBLinker(df, settings)
df_predict = linker.predict()
linker.query_sql(f"select * from {df_predict.physical_name} limit 10")
```
=== ":simple-apachespark: Spark"
```py
linker = SparkLinker(df, settings)
df_predict = linker.predict()
linker.query_sql(f"select * from {df_predict.physical_name} limit 10")
```
=== ":simple-amazonaws: Athena"
```py
linker = AthenaLinker(df, settings)
df_predict = linker.predict()
linker.query_sql(f"select * from {df_predict.physical_name} limit 10")
```
=== ":simple-sqlite: SQLite"
```py
linker = SQLiteLinker(df, settings)
df_predict = linker.predict()
linker.query_sql(f"select * from {df_predict.physical_name} limit 10")
```py
linker = Linker(df, settings, db_api)
df_predict = linker.predict()
linker.query_sql(f"select * from {df_predict.physical_name} limit 10")
```

Args:
Expand Down Expand Up @@ -1149,30 +1108,13 @@ def initialise_settings(self, settings_dict: dict):
Initialise settings for the linker. To be used if settings were
not passed to the linker on creation.
Examples:
=== ":simple-duckdb: DuckDB"
```py
linker = DuckDBLinker(df)
linker.profile_columns(["first_name", "surname"])
linker.initialise_settings(settings_dict)
```
=== ":simple-apachespark: Spark"
```py
linker = SparkLinker(df)
linker.profile_columns(["first_name", "surname"])
linker.initialise_settings(settings_dict)
```
=== ":simple-amazonaws: Athena"
```py
linker = AthenaLinker(df)
linker.profile_columns(["first_name", "surname"])
linker.initialise_settings(settings_dict)
```
=== ":simple-sqlite: SQLite"
```py
linker = SQLiteLinker(df)
linker.profile_columns(["first_name", "surname"])
linker.initialise_settings(settings_dict)
```

```py
linker = Linker(df, db_api)
linker.profile_columns(["first_name", "surname"])
linker.initialise_settings(settings_dict)
```

Args:
settings_dict (dict): A Splink settings dictionary
"""
Expand Down Expand Up @@ -1227,42 +1169,25 @@ def compute_tf_table(self, column_name: str) -> SplinkDataFrame:
various models without having to recompute term frequency tables each time

Examples:
=== ":simple-duckdb: DuckDB"
Real time linkage
```py
linker = DuckDBLinker(df)
linker.load_settings("saved_settings.json")
linker.compute_tf_table("surname")
linker.compare_two_records(record_left, record_right)
```
Pre-computed term frequency tables
```py
linker = DuckDBLinker(df)
df_first_name_tf = linker.compute_tf_table("first_name")
df_first_name_tf.write.parquet("folder/first_name_tf")
>>>
# On subsequent data linking job, read this table rather than recompute
df_first_name_tf = pd.read_parquet("folder/first_name_tf")
df_first_name_tf.createOrReplaceTempView("__splink__df_tf_first_name")
```
=== ":simple-apachespark: Spark"
Real time linkage
```py
linker = SparkLinker(df)
linker.load_settings("saved_settings.json")
linker.compute_tf_table("surname")
linker.compare_two_records(record_left, record_right)
```
Pre-computed term frequency tables
```py
linker = SparkLinker(df)
df_first_name_tf = linker.compute_tf_table("first_name")
df_first_name_tf.write.parquet("folder/first_name_tf")
>>>
# On subsequent data linking job, read this table rather than recompute
df_first_name_tf = spark.read.parquet("folder/first_name_tf")
df_first_name_tf.createOrReplaceTempView("__splink__df_tf_first_name")
```

Real time linkage
```py
linker = Linker(df, db_api)
linker.load_settings("saved_settings.json")
linker.compute_tf_table("surname")
linker.compare_two_records(record_left, record_right)
```
Pre-computed term frequency tables
```py
linker = Linker(df, db_api)
df_first_name_tf = linker.compute_tf_table("first_name")
df_first_name_tf.write.parquet("folder/first_name_tf")
>>>
# On subsequent data linking job, read this table rather than recompute
df_first_name_tf = pd.read_parquet("folder/first_name_tf")
df_first_name_tf.createOrReplaceTempView("__splink__df_tf_first_name")
```


Args:
column_name (str): The column name in the input table
Expand Down Expand Up @@ -1316,70 +1241,26 @@ def deterministic_link(self) -> SplinkDataFrame:
(false negatives).

Examples:
=== ":simple-duckdb: DuckDB"
```py
from splink.duckdb.linker import DuckDBLinker

settings = {
"link_type": "dedupe_only",
"blocking_rules_to_generate_predictions": [
"l.first_name = r.first_name",
"l.surname = r.surname",
],
"comparisons": []
}
>>>
linker = DuckDBLinker(df, settings)
df = linker.deterministic_link()
```
=== ":simple-apachespark: Spark"
```py
from splink.spark.linker import SparkLinker

settings = {
"link_type": "dedupe_only",
"blocking_rules_to_generate_predictions": [
"l.first_name = r.first_name",
"l.surname = r.surname",
],
"comparisons": []
}
>>>
linker = SparkLinker(df, settings)
df = linker.deterministic_link()
```
=== ":simple-amazonaws: Athena"
```py
from splink.athena.linker import AthenaLinker

settings = {
"link_type": "dedupe_only",
"blocking_rules_to_generate_predictions": [
"l.first_name = r.first_name",
"l.surname = r.surname",
],
"comparisons": []
}
>>>
linker = AthenaLinker(df, settings)
df = linker.deterministic_link()
```
=== ":simple-sqlite: SQLite"
```py
from splink.sqlite.linker import SQLiteLinker

settings = {
"link_type": "dedupe_only",
"blocking_rules_to_generate_predictions": [
"l.first_name = r.first_name",
"l.surname = r.surname",
],
"comparisons": []
}
>>>
linker = SQLiteLinker(df, settings)
df = linker.deterministic_link()
```

```py
from splink.linker import Linker
from splink.database_api import DuckDBAPI

db_api = DuckDBAPI()

settings = {
"link_type": "dedupe_only",
"blocking_rules_to_generate_predictions": [
"l.first_name = r.first_name",
"l.surname = r.surname",
],
"comparisons": []
}
>>>
linker = Linker(df, settings, db_api)
df = linker.deterministic_link()
```


Returns:
SplinkDataFrame: A SplinkDataFrame of the pairwise comparisons. This
Expand Down Expand Up @@ -2246,26 +2127,10 @@ def profile_columns(
profiling charts.

Examples:
=== ":simple-duckdb: DuckDB"
```py
linker = DuckDBLinker(df)
linker.profile_columns()
```
=== ":simple-apachespark: Spark"
```py
linker = SparkLinker(df)
linker.profile_columns()
```
=== ":simple-amazonaws: Athena"
```py
linker = AthenaLinker(df)
linker.profile_columns()
```
=== ":simple-sqlite: SQLite"
```py
linker = SQLiteLinker(df)
linker.profile_columns()
```
```py
linker = Linker(df, db_api)
linker.profile_columns()
```

Note:
- The `linker` object should be an instance of the initiated linker.
Expand Down Expand Up @@ -2364,18 +2229,12 @@ def truth_space_table_from_labels_table(
the number of points plotted on the ROC chart. Defaults to None.

Examples:
=== ":simple-duckdb: DuckDB"
```py
labels = pd.read_csv("my_labels.csv")
linker.register_table(labels, "labels")
linker.truth_space_table_from_labels_table("labels")
```
=== ":simple-apachespark: Spark"
```py
labels = spark.read.csv("my_labels.csv", header=True)
labels.createDataFrame("labels")
linker.truth_space_table_from_labels_table("labels")
```
```py
labels = pd.read_csv("my_labels.csv")
linker.register_table(labels, "labels")
linker.truth_space_table_from_labels_table("labels")
```

Returns:
SplinkDataFrame: Table of truth statistics
"""
Expand Down Expand Up @@ -2490,18 +2349,11 @@ def precision_recall_chart_from_labels_table(
sometimes necessary to reduce the size of the ROC table, and therefore
the number of points plotted on the ROC chart. Defaults to None.
Examples:
=== ":simple-duckdb: DuckDB"
```py
labels = pd.read_csv("my_labels.csv")
linker.register_table(labels, "labels")
linker.precision_recall_chart_from_labels_table("labels")
```
=== ":simple-apachespark: Spark"
```py
labels = spark.read.csv("my_labels.csv", header=True)
labels.createDataFrame("labels")
linker.precision_recall_chart_from_labels_table("labels")
```
```py
labels = pd.read_csv("my_labels.csv")
linker.register_table(labels, "labels")
linker.precision_recall_chart_from_labels_table("labels")
```

Returns:
altair.Chart: An altair chart
Expand Down
Loading