-
Notifications
You must be signed in to change notification settings - Fork 26
/
voc_label.py
51 lines (51 loc) · 1.88 KB
/
voc_label.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import xml.etree.ElementTree as ET
import pickle
import os
import os.path
from os import listdir, getcwd
from os.path import join
sets = ['train', 'test','val']
classes = ['person']
def convert(size, box):
dw = 1. / size[0]
dh = 1. / size[1]
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def convert_annotation(image_id):
if os.path.isfile('datasets/mydata/Annotations/%s.xml' % (image_id)):
in_file = open('datasets/mydata/Annotations/%s.xml' % (image_id))
out_file = open('datasets/mydata/labels/%s.txt' % (image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
print(wd)
for image_set in sets:
if not os.path.exists('datasets/mydata/labels/'):
os.makedirs('datasets/mydata/labels/')
image_ids = open('datasets/mydata/%s.txt' % (image_set)).read().strip().split()
list_file = open('datasets/mydata/%s.txt' % (image_set), 'w')
for image_id in image_ids:
list_file.write('datasets/mydata/images/%s.jpg\n' % (image_id))
convert_annotation(image_id)
list_file.close()