-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththegame_DQN_LongrunSave.py
266 lines (219 loc) · 9.83 KB
/
thegame_DQN_LongrunSave.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import sys
import time
import pygame
import twozerofoureight as tzfe
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import tensorforce
#from tensorforce.config import Configuration
from tensorforce.agents import DQNAgent
from tensorforce.core.networks import LayeredNetwork as RFN
#from tensorforce.core.networks import from_json
# Some kinda gray
kinda_gray = (150,150,150)
# Kinda orange
kinda_orange = dict()
kinda_orange[0] = (238, 228, 218, 0.35)
kinda_orange[2] = (238, 228, 218)
kinda_orange[4] = (237, 224, 200)
kinda_orange[8] = (242, 177, 121)
kinda_orange[16] = (245, 149, 99)
kinda_orange[32] = (246, 124, 95)
kinda_orange[64] = (246, 94, 59)
kinda_orange[128] = (237, 207, 114)
kinda_orange[256] = (237, 204, 97)
kinda_orange[512] = (237, 200, 80)
kinda_orange[1024] = (237, 197, 63)
kinda_orange[2048] = (237, 194, 46)
#QA_CNN = [{"type": "conv2d", "size": 64,"window": 2,"stride": 1},{"type": "conv2d","size": 128,"window": 2,"stride": 1},{"type": "flatten"},{"type": "dense","size": 128}]
QA_CNN = []
C1 = dict()
C1['type'] = 'conv2d'
C1['size'] = 32
C1['window'] = 2
C1['stride'] = 1
QA_CNN.append(C1)
C2 = dict()
C2['type'] = 'conv2d'
C2['size'] = 64
C2['window'] = 2
C2['stride'] = 1
QA_CNN.append(C2)
F = dict()
F['type'] = 'flatten'
QA_CNN.append(F)
D1 = dict()
D1['type'] = 'dense'
D1['size'] = 256
QA_CNN.append(D1)
# Blinding_white
blinding_white = (255, 255, 255)
# Blacky black
blacky_black = (0, 0, 0)
# Chocolate_brown
chocolate_brown = (119, 110, 101)
# Booooo Red
booooo_red = (200, 25, 25)
##WZ
num_episodes = 10000
artificial_delay = 0
reward_history = []
if __name__ == "__main__":
# Parse the grid dimension from the command line
# And use that to create a game window to
# house that size of the grid. Here we assume 4
grid_size = 4
# # Initialize pygame
# pygame.init()
# # If we paint a rectangle cell of size 64 pixels
# # Also include a header height to display score
# header_height = 48
# tile_size = 96
# width, height = tile_size * grid_size, tile_size * grid_size + header_height
# # Create a screen
# screen = pygame.display.set_mode((width, height))
# screen_rect = screen.get_rect()
# # Create a font object
# font = pygame.font.Font(None, 24)
QA_actions = dict(type='int', num_actions=4)
QA_states = dict(shape=(4,4,1), type='float')
#QA_states = dict(shape=(16,), type='float')
#QA_dummy = [dict(type='dense', size=32), dict(type='dense', size=32)]
agent = tensorforce.agents.DQNAgent(states_spec = QA_states,
actions_spec = QA_actions,
network_spec = QA_CNN,
device=None,
#session_config=None,
scope='dqn',
saver_spec=dict(
load = True,
directory = "checkpoints",
steps = 20000
),
summary_spec=None,
distributed_spec=None,
optimizer=dict(
type='adam',
learning_rate=1e-3
),
discount=0.99,
variable_noise=None,
#states_preprocessing_spec=None,
#explorations_spec=None,
#reward_preprocessing_spec=None,
#distributions_spec=None,
entropy_regularization=None,
target_sync_frequency=10000,
target_update_weight=1.0,
double_q_model=False,
huber_loss=None,
batched_observe=1000,
batch_size=32,
memory=dict(
type='replay',
capacity=100000
),
first_update=10000,
update_frequency=32,
repeat_update=1)
print('Game started!')
for e in range(num_episodes):
# Create a game of that dimension
game = tzfe.TwoZeroFourEight(grid_size)
##WZ
### RF INIT ###
agent.reset()
last_score = 0
game_over = False
##WZ
while not(game_over):
# for event in pygame.event.get():
# if event.type == pygame.QUIT:
# sys.exit(0)
# Generate a random move
##WZ
#state = np.reshape(game.get_state(),-1)
#Preprocessing
state_vec = np.reshape(game.get_state(),-1)
pp = np.log2(np.maximum(state_vec,1))/10
pp1 = np.reshape(pp,(4,4))
state = np.expand_dims(pp1,axis=2)
#state = np.expand_dims(game.get_state(),axis=2)
action = agent.act(states=state)
rand_move = action
##WZ
# all moves
all_moves = ["LEFT", "UP", "RIGHT", "DOWN"]
# Now figure out what key it is
# run the game
if all_moves[rand_move] == "LEFT":
game.slide_left()
game_over, new_tile = game.insert_new_tile()
elif all_moves[rand_move] == "UP":
game.slide_up()
game_over, new_tile = game.insert_new_tile()
elif all_moves[rand_move] == "RIGHT":
game.slide_right()
game_over, new_tile = game.insert_new_tile()
elif all_moves[rand_move] == "DOWN":
game.slide_down()
game_over, new_tile = game.insert_new_tile()
##WZ
score = game.get_score()
latest_reward = (np.log2(np.maximum(score-last_score,1))/10) - 0.05
agent.observe(reward=latest_reward, terminal=game_over)
last_score = score
##WZ
# # Fill the screen
# screen.fill(kinda_gray)
# # Score string
# score_string = "Score: {0:0>-06d}".format(game.get_score())
# # Write out score
# score_surface = font.render(score_string, True, blacky_black)
# score_rect = score_surface.get_rect()
# score_rect.topright = screen_rect.topright
# screen.blit(score_surface, score_rect)
# # Now draw the game onto the screen
# for i in range(grid_size):
# for j in range(grid_size):
# tile_top = i * tile_size + header_height
# tile_left = j * tile_size
# tile_value = game.get_tile_value(i, j)
# tile_rect = pygame.draw.rect(screen, blacky_black, (tile_left, tile_top, tile_size, tile_size), 1)
# screen.fill(kinda_orange[tile_value], tile_rect)
# if tile_value > 0:
# # draw a square tile
# tile_value_string = "{0:^4d}".format(tile_value)
# tile_value_surface = font.render(tile_value_string, True, chocolate_brown)
# tile_value_surface_rect = tile_value_surface.get_rect()
# tile_value_surface_rect.center = tile_rect.center
# screen.blit(tile_value_surface, tile_value_surface_rect)
# print("Last action: {} Current score: {} {}".format(all_moves[rand_move], score, " "*20), end="\r")
print("Episode: {} Last action: {} Current score: {} {}".format(e, all_moves[rand_move], score, " "*20), end="\r")
# check game over and paint it to top left in RED
if game_over:
#game_over_surface = font.render("Game Over", True, booooo_red)
#game_over_rect = game_over_surface.get_rect()
#game_over_rect.topleft = screen_rect.topleft
#screen.blit(game_over_surface, game_over_rect)
reward_history.append(score)
if (e % 100 == 0) and (e>99):
print('Episode: {} | Mean last 100 games: {} {}'.format(e, np.mean(reward_history[-100:]), " "*50))
# 200 ms delay
time.sleep(artificial_delay)
# # Update the display
# pygame.display.update()
#evaluation:
print('--Evaluation--')
print('Highest score: %d' %np.max(reward_history))
with open('reward_history.txt','w') as f:
for rew in reward_history:
f.write("{}\n".format(rew))
# plt.plot(reward_history)
# plt.xlabel('Episodes')
# plt.ylabel('Score')
# plt.grid(True)
# plt.title('RandomAgent')
# pygame.quit()
sys.exit(0)