-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreadme.txt
54 lines (51 loc) · 2.64 KB
/
readme.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
% CircularMap: A numerical implementation of the circular map in MATLAB
%
% Copyright Mohamed Nasser 2017
% Please cite this MATLAB functions as:
%
% When citing this software please mention the URL of the master repository
% (https://github.com/mmsnasser/CircularMap), and the paper
% M.M.S. Nasser,Fast Computation of the Circular Map, Computational Methods
% and Function Theory, 15 (2015) 187-223.
%
%
% PLEASE note that this toolbox contains the files:
% zfmm2dpart.m
% fmm2d_r2012a.mexw32
% fmm2d_r2012a.mexw64
% pthreadGC2-w32.dll
% pthreadGC2-w64.dll
% From the Toolbox:
% L. G REENGARD AND Z. G IMBUTAS , FMMLIB2D: A MATLAB toolbox for
% fast multipole method in two dimensions, Version 1.2, 2012.
% http://www.cims.nyu.edu/cmcl/fmm2dlib/fmm2dlib.html
% PLEASE also cite the FMMLIB2D toolbox.
% The function
% [zet,zetp,cntd,rad] = circmap(et,etp,alpha,n)
% Compute the circular map from a bounded multiply connected domain G of
% connectivity m+1 bounded by \Gamma_0,\Gamma_1,...,\Gamma_m where \Gamma_0
% is the exterior boundary onto a bounded multiply connected circular domain
% \Omega bounded by the circles C_0,C_1,...,C_m where C_0 is the exterior circle
% and C_0 is the unit circle. The function also Compute the circular map for
% unbounded multiply connected circular domain of connectivity m bounded by
% \Gamma_1,...,\Gamma_m onto an unbounded multiply connected domain \Omega
% bounded by the circles C_1,...,C_m.
% In particular, the function "circmap.m" compute
% 1. cntd: a vector contains the centers of the circles C_0,C_1,...,C_m for
% bounded G; and the centers of the circles C_1,...,C_m for unbounded G.
% 2. rad: a vector contains the radius of the circles C_0,C_1,...,C_m for
% bounded G; and the radius of the circles C_1,...,C_m for unbounded G.
% 3. zet: the parameterization of the boundary of \Omega.
% 4. zetp: the derivative of the parameterization of the boundary of \Omega
% where
% 1. et: the parameterization of the boundary of G.
% 2. etp: the derivative of the parameterization of the boundary of G
% 3. alpha: for bounded G, alpha is a point in G that will be mapped
% onto 0 in \Omega; for unbounded G, alpha=inf and it will be mapped
% onto inf.
% 4. n: the number of discretization points of each boundary component
% 5. koebetol: the tolerance of Koebe iterative method
% 6. gmrestol: the tolerance of GMRES iterative method
% 7. koebemaxit: the maximum number of iterations allowed for Koebe iterative method
% 8. gmresmaxit:the maximum number of iterations allowed for GMRES iterative method
% 9. iprec: for the accurecy of the FMM (see zfmm2dpart.m).