-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_logreg.py
53 lines (34 loc) · 1.41 KB
/
train_logreg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import pickle
import argparse
import numpy as np
import xgboost as xgb
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from util.dataset_io import load_dataset
parser = argparse.ArgumentParser(description='Train a xgboost model.')
parser.add_argument('--train_name', required=True,
help='name of the training dataset')
parser.add_argument('--val_name',
help='name of the validation dataset')
parser.add_argument('--model_name', default='base',
help='name of the model for saving')
parser.add_argument('--C', type=float, default=1.0,
help='inverse regularization strength')
if __name__ == "__main__":
args = parser.parse_args()
print("Loading training datataset...")
X_train, y_train = load_dataset(args.train_name)
print("Done.\nTraining...")
model = LogisticRegression(verbose=0, C=args.C, n_jobs=4, solver='saga')
model.fit(X_train, y_train)
print("Done.\nSaving...")
with open("./models/" + args.model_name + ".pickle", "wb") as f:
pickle.dump(model, f)
print("Done.")
if args.val_name is not None:
print("Validating...")
X_val, y_val = load_dataset(args.val_name)
preds = model.predict(X_val)
pred_labels = np.rint(preds)
print("\taccuracy:", accuracy_score(y_val, pred_labels))
print("Done.")